Summary: | There are few studies on the mechanism of redox status imbalance and intestinal dysfunction in intrauterine growth restricted (IUGR) newborn piglets. Here, we investigated the mechanism of jejunum dysfunction in weaned piglets with IUGR and the mechanism through which dimethylglycine sodium salt (DMG-Na) supplementation improving the imbalance of their redox status. In this work, a total of 10 normal birth weight (NBW) newborn piglets and 20 IUGR newborn piglets were obtained. After weaning at 21 d, they were assigned to 3 groups (n = 10/group): NBW weaned piglets fed standard basal diets (NBWC); one IUGR weaned piglets fed standard basal diets (IUGRC); another IUGR weaned piglets from the same litter fed standard basal diets plus 0.1% DMG-Na (IUGRD). The piglets in these 3 groups were sacrificed at 49 d of age, and the blood and jejunum samples were collected immediately. The growth performance values in the IUGRC group were lower (P < 0.05) than those in the NBWC group. Jejunum histomorphological parameters, inflammatory cytokines, and digestive enzyme activity as well as serum immunoglobulin were lower (P < 0.05) in the IUGRC group than those in the NBWC group. Compared with these in the NBWC group, the redox status of serum, jejunum, and mitochondria and the expression levels of jejunum redox status-related, cell adhesion-related, and mitochondrial function-related genes and proteins were suppressed in the IUGRC group (P < 0.05). However, compared with those in the IUGRC group, the growth performance values, jejunum histomorphological parameters, inflammatory cytokines, digestive enzyme activity, serum immunoglobulin, redox status of serum, jejunum, and mitochondria, and the expression levels of jejunum redox status-related, cell adhesion-related, and mitochondrial function-related genes and proteins were improved (P < 0.05) in the IUGRD group. In conclusion, dietary DMG-Na supplementation alleviates redox status imbalance and intestinal dysfunction in IUGR weaned piglets mainly by activating the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptorγcoactivator-1α (PGC1α) pathway, thereby improving their unfavorable body state. © 2022 Chinese Association of Animal Science and Veterinary Medicine
|