A phase transition for tails of the free multiplicative convolution powers

We study the behavior of the tail of a measure μ⊠t, where ⊠t is the t-fold free multiplicative convolution power for t≥1. We focus on the case where μ is a probability measure on the positive half-line with a regularly varying right tail i.e. of the form x−αL(x), where L is slowly varying. We obtain...

Full description

Bibliographic Details
Main Authors: Kołodziejek, B. (Author), Szpojankowski, K. (Author)
Format: Article
Language:English
Published: Academic Press Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01463nam a2200205Ia 4500
001 10.1016-j.aim.2022.108398
008 220425s2022 CNT 000 0 und d
020 |a 00018708 (ISSN) 
245 1 0 |a A phase transition for tails of the free multiplicative convolution powers 
260 0 |b Academic Press Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.aim.2022.108398 
520 3 |a We study the behavior of the tail of a measure μ⊠t, where ⊠t is the t-fold free multiplicative convolution power for t≥1. We focus on the case where μ is a probability measure on the positive half-line with a regularly varying right tail i.e. of the form x−αL(x), where L is slowly varying. We obtain a phase transition in the behavior of the right tail of μ⊞t between regimes α<1 and α>1. Our main tool is a description of regular variation of the tail of μ in terms of the behavior of the corresponding S-transform at 0−. We also describe the tails of ⊠ infinitely divisible measures in terms of the tails of corresponding Lévy measure, treat symmetric measures with regularly varying tails and prove the free analog of the Breiman lemma. © 2022 Elsevier Inc. 
650 0 4 |a Free multiplicative convolution 
650 0 4 |a Infinite divisibility 
650 0 4 |a Regular variation 
650 0 4 |a S-transform 
650 0 4 |a Tails 
700 1 |a Kołodziejek, B.  |e author 
700 1 |a Szpojankowski, K.  |e author 
773 |t Advances in Mathematics