Interface regularity for semilinear one-phase problems

We study critical points of a one-parameter family of functionals arising in combustion models. The problems we consider converge, for infinitesimal values of the parameter, to Bernoulli's free boundary problem, also known as one-phase problem. We prove a C1,α estimates for the “interfaces” (le...

Full description

Bibliographic Details
Main Authors: Audrito, A. (Author), Serra, J. (Author)
Format: Article
Language:English
Published: Academic Press Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01254nam a2200181Ia 4500
001 10.1016-j.aim.2022.108380
008 220425s2022 CNT 000 0 und d
020 |a 00018708 (ISSN) 
245 1 0 |a Interface regularity for semilinear one-phase problems 
260 0 |b Academic Press Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.aim.2022.108380 
520 3 |a We study critical points of a one-parameter family of functionals arising in combustion models. The problems we consider converge, for infinitesimal values of the parameter, to Bernoulli's free boundary problem, also known as one-phase problem. We prove a C1,α estimates for the “interfaces” (level sets separating the burnt and unburnt regions). As a byproduct, we obtain the one-dimensional symmetry of minimizers in the whole RN, for N≤4, answering positively a conjecture of Fernández-Real and Ros-Oton. Our results are to Bernoulli's free boundary problem what Savin's results for the Allen-Cahn equation are to minimal surfaces. © 2022 The Author(s) 
650 0 4 |a Blow-down 
650 0 4 |a Improvement of flatness 
650 0 4 |a One-phase free boundary problem 
700 1 |a Audrito, A.  |e author 
700 1 |a Serra, J.  |e author 
773 |t Advances in Mathematics