Techno-economic feasibility analysis of Benban solar Park

By 2035, Egypt pursues to generate 22% of the total electricity from photovoltaic power plants to meet the national spreading demand for electricity. The Egyptian government has implemented feed-in tariffs (FiT) support program to provide the economic incentives to invest in the PV power plants. The...

Full description

Bibliographic Details
Main Authors: Maghrabie, H.M (Author), Mohamed, A.S.A (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
Description
Summary:By 2035, Egypt pursues to generate 22% of the total electricity from photovoltaic power plants to meet the national spreading demand for electricity. The Egyptian government has implemented feed-in tariffs (FiT) support program to provide the economic incentives to invest in the PV power plants. The present study is carried out to evaluate the techno-economic feasibility of a large-scale grid-connected photovoltaic (LS GCPV) of the Benban Solar Park with a total capacity of 1600 MW AC producing annual electricity of 3.8 TWh. The characteristics of PV panels considering the meteorological data of Benban Solar Park are evaluated. Additionally, the reduction of greenhouse gas (GHG) emissions due to constructing Benban Solar Park is assessed. As well, the influences of annual operation and maintenance cost and the interest rate on the electricity cost and the payback period are evaluated. The results indicate that the electricity cost is about 8.1 US¢/kWh with 10.1 years payback period, which is indeed economically feasible with an interest rate of 12%. Furthermore, the Benban Solar Park will avoid annually almost 1.2 million tons of greenhouse gas. Finally, based on the techno-economic analysis, the improvement directions for the feasibility analysis based on agrivoltaic systems are proposed. © 2022
ISBN:11100168 (ISSN)
DOI:10.1016/j.aej.2022.06.034