|
|
|
|
LEADER |
00861nam a2200169Ia 4500 |
001 |
10.1007-s12220-022-00907-1 |
008 |
220425s2022 CNT 000 0 und d |
020 |
|
|
|a 10506926 (ISSN)
|
245 |
1 |
0 |
|a A Minkowski Inequality for Horowitz–Myers Geon
|
260 |
|
0 |
|b Springer
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1007/s12220-022-00907-1
|
520 |
3 |
|
|a We prove a sharp inequality for toroidal hypersurfaces in three- and four-dimensional Horowitz–Myers geon. This extend previous results on Minkowski inequality in the static spacetime to toroidal surfaces in asymptotically hyperbolic manifold with flat toroidal conformal infinity. © 2022, Mathematica Josephina, Inc.
|
650 |
0 |
4 |
|a Horowitz–Myers geon
|
650 |
0 |
4 |
|a Minkowski inequality
|
700 |
1 |
|
|a Alaee, A.
|e author
|
700 |
1 |
|
|a Hung, P.-K.
|e author
|
773 |
|
|
|t Journal of Geometric Analysis
|