A Minkowski Inequality for Horowitz–Myers Geon

We prove a sharp inequality for toroidal hypersurfaces in three- and four-dimensional Horowitz–Myers geon. This extend previous results on Minkowski inequality in the static spacetime to toroidal surfaces in asymptotically hyperbolic manifold with flat toroidal conformal infinity. © 2022, Mathematic...

Full description

Bibliographic Details
Main Authors: Alaee, A. (Author), Hung, P.-K (Author)
Format: Article
Language:English
Published: Springer 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 00861nam a2200169Ia 4500
001 10.1007-s12220-022-00907-1
008 220425s2022 CNT 000 0 und d
020 |a 10506926 (ISSN) 
245 1 0 |a A Minkowski Inequality for Horowitz–Myers Geon 
260 0 |b Springer  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s12220-022-00907-1 
520 3 |a We prove a sharp inequality for toroidal hypersurfaces in three- and four-dimensional Horowitz–Myers geon. This extend previous results on Minkowski inequality in the static spacetime to toroidal surfaces in asymptotically hyperbolic manifold with flat toroidal conformal infinity. © 2022, Mathematica Josephina, Inc. 
650 0 4 |a Horowitz–Myers geon 
650 0 4 |a Minkowski inequality 
700 1 |a Alaee, A.  |e author 
700 1 |a Hung, P.-K.  |e author 
773 |t Journal of Geometric Analysis