A new type of spectral mapping theorem for quantum walks with a moving shift on graphs

The conventional spectral mapping theorem for quantum walks can only be applied for walks employing a shift operator whose square is the identity. This theorem gives most of the eigenvalues of the time evolution U by lifting the eigenvalues of an induced self-adjoint matrix T onto the unit circle on...

Full description

Bibliographic Details
Main Authors: Kubota, S. (Author), Saito, K. (Author), Yoshie, Y. (Author)
Format: Article
Language:English
Published: Springer 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01998nam a2200349Ia 4500
001 10.1007-s11128-022-03493-x
008 220510s2022 CNT 000 0 und d
020 |a 15700755 (ISSN) 
245 1 0 |a A new type of spectral mapping theorem for quantum walks with a moving shift on graphs 
260 0 |b Springer  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s11128-022-03493-x 
520 3 |a The conventional spectral mapping theorem for quantum walks can only be applied for walks employing a shift operator whose square is the identity. This theorem gives most of the eigenvalues of the time evolution U by lifting the eigenvalues of an induced self-adjoint matrix T onto the unit circle on the complex plane. We acquire a new spectral mapping theorem for the Grover walk with a shift operator whose cube is the identity on finite graphs. Moreover, graphs we can consider for a quantum walk with such a shift operator is characterized by a triangulation. We call these graphs triangulable graphs in this paper. One of the differences between our spectral mapping theorem and the conventional one is that lifting the eigenvalues of T- 1 / 2 onto the unit circle gives most of the eigenvalues of U. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. 
650 0 4 |a Adjoint matrix 
650 0 4 |a Eigen-value 
650 0 4 |a Eigenvalues and eigenfunctions 
650 0 4 |a Graph theory 
650 0 4 |a Mapping theorem 
650 0 4 |a Photomapping 
650 0 4 |a Quantum walk 
650 0 4 |a Quantum walk 
650 0 4 |a Shift operators 
650 0 4 |a Spectral graph theory 
650 0 4 |a Spectral graph theory 
650 0 4 |a Spectral mapping theorem 
650 0 4 |a Spectral mapping theorem 
650 0 4 |a Spectral mappings 
650 0 4 |a Time evolutions 
650 0 4 |a Unit circles 
700 1 |a Kubota, S.  |e author 
700 1 |a Saito, K.  |e author 
700 1 |a Yoshie, Y.  |e author 
773 |t Quantum Information Processing