|
|
|
|
LEADER |
01741nam a2200193Ia 4500 |
001 |
10.1007-s11005-022-01522-5 |
008 |
220510s2022 CNT 000 0 und d |
020 |
|
|
|a 03779017 (ISSN)
|
245 |
1 |
0 |
|a Blow-up of waves on singular spacetimes with generic spatial metrics
|
260 |
|
0 |
|b Springer Science and Business Media B.V.
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1007/s11005-022-01522-5
|
520 |
3 |
|
|a We study the asymptotic behaviour of solutions to the linear wave equation on cosmological spacetimes with Big Bang singularities and show that appropriately rescaled waves converge against a blow-up profile. Our class of spacetimes includes Friedman–Lemaître–Robertson–Walker (FLRW) spacetimes with negative sectional curvature that solve the Einstein equations in the presence of a perfect irrotational fluid with p= (γ- 1) ρ. As such, these results are closely related to the still open problem of past nonlinear stability of such FLRW spacetimes within the Einstein scalar field equations. In contrast to earlier works, our results hold for spatial metrics of arbitrary geometry, hence indicating that the matter blow-up in the aforementioned problem is not dependent on spatial geometry. Additionally, we use the energy estimates derived in the proof in order to formulate open conditions on the initial data that ensure a non-trivial blow-up profile, for initial data sufficiently close to the Big Bang singularity and with less harsh assumptions for γ< 2. © 2022, The Author(s).
|
650 |
0 |
4 |
|a Big Bang singularity
|
650 |
0 |
4 |
|a Blow-up profile
|
650 |
0 |
4 |
|a Cosmology
|
650 |
0 |
4 |
|a Wave equation
|
700 |
1 |
|
|a Fajman, D.
|e author
|
700 |
1 |
|
|a Urban, L.
|e author
|
773 |
|
|
|t Letters in Mathematical Physics
|