Vortex Pairs and Dipoles on Closed Surfaces

We set up general equations of motion for point vortex systems on closed Riemannian surfaces, allowing for the case that the sum of vorticities is not zero and there hence must be counter-vorticity present. The dynamics of global circulations which is coupled to the dynamics of the vortices is caref...

Full description

Bibliographic Details
Main Author: Gustafsson, B. (Author)
Format: Article
Language:English
Published: Springer 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02022nam a2200385Ia 4500
001 10.1007-s00332-022-09822-9
008 220718s2022 CNT 000 0 und d
020 |a 09388974 (ISSN) 
245 1 0 |a Vortex Pairs and Dipoles on Closed Surfaces 
260 0 |b Springer  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s00332-022-09822-9 
520 3 |a We set up general equations of motion for point vortex systems on closed Riemannian surfaces, allowing for the case that the sum of vorticities is not zero and there hence must be counter-vorticity present. The dynamics of global circulations which is coupled to the dynamics of the vortices is carefully taken into account. Much emphasis is put to the study of vortex pairs, having the Kimura conjecture in focus. This says that vortex pairs move, in the dipole limit, along geodesic curves, and proofs for it have previously been given by S. Boatto and J. Koiller by using Gaussian geodesic coordinates. In the present paper, we reach the same conclusion by following a slightly different route, leading directly to the geodesic equation with a reparametrized time variable. In a final section, we explain how vortex motion in planar domains can be seen as a special case of vortex motion on closed surfaces. © 2022, The Author(s). 
650 0 4 |a Affine connection 
650 0 4 |a Closed surfaces 
650 0 4 |a Equations of motion 
650 0 4 |a Geodesic curve 
650 0 4 |a Geodesic curves 
650 0 4 |a Geodesy 
650 0 4 |a Green function 
650 0 4 |a Greens function 
650 0 4 |a Hamiltonian function 
650 0 4 |a Hamiltonians 
650 0 4 |a Point vortex 
650 0 4 |a Point vortices 
650 0 4 |a Projective connection 
650 0 4 |a Robin function 
650 0 4 |a Robin's function 
650 0 4 |a Symplectic form 
650 0 4 |a Symplectic forms 
650 0 4 |a Vortex dipole 
650 0 4 |a Vortex flow 
650 0 4 |a Vortex pair 
650 0 4 |a Vorticity 
700 1 |a Gustafsson, B.  |e author 
773 |t Journal of Nonlinear Science