A chain binomial epidemic with asymptomatics motivated by COVID-19 modelling

Motivated by modelling epidemics like COVID-19, this paper proposes a generalized chain binomial process which integrates two types of infectives, those with symptoms and those without. Testing of infectives and vaccination of susceptibles are then incorporated as preventive protective measures. Our...

Full description

Bibliographic Details
Main Authors: Lefèvre, C. (Author), Picard, P. (Author), Simon, M. (Author), Utev, S. (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02040nam a2200373Ia 4500
001 10.1007-s00285-021-01680-5
008 220427s2021 CNT 000 0 und d
020 |a 03036812 (ISSN) 
245 1 0 |a A chain binomial epidemic with asymptomatics motivated by COVID-19 modelling 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s00285-021-01680-5 
520 3 |a Motivated by modelling epidemics like COVID-19, this paper proposes a generalized chain binomial process which integrates two types of infectives, those with symptoms and those without. Testing of infectives and vaccination of susceptibles are then incorporated as preventive protective measures. Our interest relates to the distribution of the state of the population at the end of infection and to the reproduction number R with the associated extinction condition. The method uses the construction of a family of martingales and a branching approximation for large populations, respectively. A more general branching process for epidemics is also constructed and studied. Finally, some results obtained are illustrated by numerical examples. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. 
650 0 4 |a Approximation by branching 
650 0 4 |a basic reproduction number 
650 0 4 |a Basic Reproduction Number 
650 0 4 |a biological model 
650 0 4 |a COVID-19 
650 0 4 |a disease predisposition 
650 0 4 |a Disease Susceptibility 
650 0 4 |a epidemic 
650 0 4 |a Epidemics 
650 0 4 |a Final population state 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Models, Biological 
650 0 4 |a Reproduction number 
650 0 4 |a SARS-CoV-2 
650 0 4 |a Symptomatic infected or not 
650 0 4 |a Testing and vaccination 
700 1 |a Lefèvre, C.  |e author 
700 1 |a Picard, P.  |e author 
700 1 |a Simon, M.  |e author 
700 1 |a Utev, S.  |e author 
773 |t Journal of Mathematical Biology