Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition

We consider a fractional double phase Robin problem involving variable order and variable exponents. The nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include the Ambrosetti–Rabinowitz-type condition. By using a variational methods, we investigate the multiplicit...

Full description

Bibliographic Details
Main Authors: Bahrouni, S. (Author), Biswas, R. (Author), Carvalho, M.L (Author)
Format: Article
Language:English
Published: Birkhauser 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01501nam a2200313Ia 4500
001 10.1007-s00033-022-01724-w
008 220510s2022 CNT 000 0 und d
020 |a 00442275 (ISSN) 
245 1 0 |a Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition 
260 0 |b Birkhauser  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s00033-022-01724-w 
520 3 |a We consider a fractional double phase Robin problem involving variable order and variable exponents. The nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include the Ambrosetti–Rabinowitz-type condition. By using a variational methods, we investigate the multiplicity of solutions. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG. 
650 0 4 |a Boundary conditions 
650 0 4 |a Condition 
650 0 4 |a Double phase problem 
650 0 4 |a Multiplicity of solutions 
650 0 4 |a Phase problem 
650 0 4 |a P-Laplacian 
650 0 4 |a Robin boundary condition 
650 0 4 |a Robin boundary conditions 
650 0 4 |a Variable exponents 
650 0 4 |a Variable-order fractional p(·) -laplacian 
650 0 4 |a Variable-order fractional p(·) -Laplacian 
650 0 4 |a Variables ordering 
650 0 4 |a Variational methods 
700 1 |a Bahrouni, S.  |e author 
700 1 |a Biswas, R.  |e author 
700 1 |a Carvalho, M.L.  |e author 
773 |t Zeitschrift fur Angewandte Mathematik und Physik