|
|
|
|
LEADER |
01501nam a2200313Ia 4500 |
001 |
10.1007-s00033-022-01724-w |
008 |
220510s2022 CNT 000 0 und d |
020 |
|
|
|a 00442275 (ISSN)
|
245 |
1 |
0 |
|a Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition
|
260 |
|
0 |
|b Birkhauser
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1007/s00033-022-01724-w
|
520 |
3 |
|
|a We consider a fractional double phase Robin problem involving variable order and variable exponents. The nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include the Ambrosetti–Rabinowitz-type condition. By using a variational methods, we investigate the multiplicity of solutions. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
|
650 |
0 |
4 |
|a Boundary conditions
|
650 |
0 |
4 |
|a Condition
|
650 |
0 |
4 |
|a Double phase problem
|
650 |
0 |
4 |
|a Multiplicity of solutions
|
650 |
0 |
4 |
|a Phase problem
|
650 |
0 |
4 |
|a P-Laplacian
|
650 |
0 |
4 |
|a Robin boundary condition
|
650 |
0 |
4 |
|a Robin boundary conditions
|
650 |
0 |
4 |
|a Variable exponents
|
650 |
0 |
4 |
|a Variable-order fractional p(·) -laplacian
|
650 |
0 |
4 |
|a Variable-order fractional p(·) -Laplacian
|
650 |
0 |
4 |
|a Variables ordering
|
650 |
0 |
4 |
|a Variational methods
|
700 |
1 |
|
|a Bahrouni, S.
|e author
|
700 |
1 |
|
|a Biswas, R.
|e author
|
700 |
1 |
|
|a Carvalho, M.L.
|e author
|
773 |
|
|
|t Zeitschrift fur Angewandte Mathematik und Physik
|