Looking Outside the Square: The Growth, Structure, and Resilient Two-Dimensional Surface Electron Gas of Square SnO2 Nanotubes

Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable m...

Full description

Bibliographic Details
Main Authors: Adams, R.L (Author), Allen, M.W (Author), Carroll, L.R (Author), Downard, A.J (Author), Martinez-Gazoni, R.F (Author), Reeves, R.J (Author), Scott, J.I (Author), Veal, T.D (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03229nam a2200541Ia 4500
001 10.1002-smll.202300520
008 230526s2023 CNT 000 0 und d
020 |a 16136810 (ISSN) 
245 1 0 |a Looking Outside the Square: The Growth, Structure, and Resilient Two-Dimensional Surface Electron Gas of Square SnO2 Nanotubes 
260 0 |b John Wiley and Sons Inc  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/smll.202300520 
520 3 |a Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400 °C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated. © 2023 The Authors. Small published by Wiley-VCH GmbH. 
650 0 4 |a 2D electron gas 
650 0 4 |a 2D electron gas (2DEG) 
650 0 4 |a Acetone 
650 0 4 |a Chemical vapor deposition 
650 0 4 |a Electrons 
650 0 4 |a Field effect transistors 
650 0 4 |a Gold nanoparticles 
650 0 4 |a Growth structures 
650 0 4 |a High resolution transmission electron microscopy 
650 0 4 |a Oxide minerals 
650 0 4 |a oxygen vacancies 
650 0 4 |a Oxygen vacancies 
650 0 4 |a Sapphire 
650 0 4 |a Sb-doped 
650 0 4 |a Scalable methods 
650 0 4 |a Schottky barrier diodes 
650 0 4 |a Square nanostructure 
650 0 4 |a square nanostructures 
650 0 4 |a Surface electron 
650 0 4 |a surface hydroxyl 
650 0 4 |a Surface hydroxyl 
650 0 4 |a tin dioxide 
650 0 4 |a Tin dioxide 
650 0 4 |a Titanium dioxide 
650 0 4 |a Two-dimensional surface 
650 0 4 |a Vertically aligned 
650 0 4 |a X ray photoelectron spectroscopy 
700 1 0 |a Adams, R.L.  |e author 
700 1 0 |a Allen, M.W.  |e author 
700 1 0 |a Carroll, L.R.  |e author 
700 1 0 |a Downard, A.J.  |e author 
700 1 0 |a Martinez-Gazoni, R.F.  |e author 
700 1 0 |a Reeves, R.J.  |e author 
700 1 0 |a Scott, J.I.  |e author 
700 1 0 |a Veal, T.D.  |e author 
773 |t Small  |x 16136810 (ISSN)