Economic and ecological benefits of a leaky E. coli strain for downstream processing: a case study for staphylococcal protein A

BACKGROUND: Downstream processing of soluble recombinant proteins from Escherichia coli is complicated by the need to access the intracellular product by cell disruption and to separate the target protein from impurities, particularly host cell protein, DNA, endotoxins and lipids. We previously demo...

Full description

Bibliographic Details
Main Authors: Cataldo, A.L (Author), Ebner, J. (Author), Jungbauer, A. (Author), Kastenhofer, J. (Author), Sedlmayr, V.L (Author), Spadiut, O. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04490nam a2200793Ia 4500
001 10.1002-jctb.6691
008 220427s2021 CNT 000 0 und d
020 |a 02682575 (ISSN) 
245 1 0 |a Economic and ecological benefits of a leaky E. coli strain for downstream processing: a case study for staphylococcal protein A 
260 0 |b John Wiley and Sons Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/jctb.6691 
520 3 |a BACKGROUND: Downstream processing of soluble recombinant proteins from Escherichia coli is complicated by the need to access the intracellular product by cell disruption and to separate the target protein from impurities, particularly host cell protein, DNA, endotoxins and lipids. We previously demonstrated the ability of the E. coli X-press strain to leak high amounts of product to the culture medium without sacrificing viability. In this case study, we assessed the economic and ecological benefit of this strain for downstream processing in direct comparison to the industrial standard E. coli BL21(DE3). Staphylococcal Protein A was used as a model protein. We performed recombinant protein production, primary recovery and capture by anion exchange chromatography at laboratory scale, and used the data obtained for estimating costs and resource consumption by economic modeling. RESULTS: After primary recovery, the X-press process resulted in a 1.5-fold higher product purity, a 150-fold lower DNA, 3.5-fold lower endotoxin and 3.4-fold lower lipid load compared to BL21(DE3). Consequently, anion exchanger binding capacity was increased 2.7-fold and purity and concentration of the eluate also was increased. Extracellular protein production with X-press resulted in a 25% reduction of costs and a 36% reduction of both water usage and water-related CO2 emissions compared to intracellular production with BL21(DE3). CONCLUSIONS: This case study performed with stapyhlococcal Protein A demonstrated the potential of E. coli X-press to reduce costs for downstream processing and improve the environmental footprint by simplified primary recovery, lower impurity load and consequently higher chromatographic efficiency. © 2021 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2021 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. 
650 0 4 |a amino acid sequence 
650 0 4 |a anion exchange 
650 0 4 |a anion exchange chromatography 
650 0 4 |a Anion exchange chromatography 
650 0 4 |a Article 
650 0 4 |a bacterial growth 
650 0 4 |a bacterial outer membrane 
650 0 4 |a bevifimod 
650 0 4 |a capture chromatography 
650 0 4 |a carbon dioxide 
650 0 4 |a carbon footprint 
650 0 4 |a cell disruption 
650 0 4 |a cell lysate 
650 0 4 |a Chemical industry 
650 0 4 |a Chromatography 
650 0 4 |a conductance 
650 0 4 |a cost 
650 0 4 |a cost of goods sold 
650 0 4 |a Cost reduction 
650 0 4 |a dissolved oxygen 
650 0 4 |a downstream processing 
650 0 4 |a Ecology 
650 0 4 |a Economic analysis 
650 0 4 |a Economic and social effects 
650 0 4 |a Environmental footprints 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli endotoxin 
650 0 4 |a Extracellular proteins 
650 0 4 |a hyperbarism 
650 0 4 |a Industrial economics 
650 0 4 |a Intracellular production 
650 0 4 |a Intracellular products 
650 0 4 |a Ion exchangers 
650 0 4 |a limit of detection 
650 0 4 |a nonhuman 
650 0 4 |a Presses (machine tools) 
650 0 4 |a primary recovery 
650 0 4 |a process mass intensity 
650 0 4 |a process model 
650 0 4 |a protein secretion 
650 0 4 |a Recombinant protein productions 
650 0 4 |a Recombinant proteins 
650 0 4 |a Recovery 
650 0 4 |a reversed phase high performance liquid chromatography 
650 0 4 |a soluble protein expression 
650 0 4 |a Staphylococcal protein 
650 0 4 |a Staphylococcal protein a 
650 0 4 |a temperature 
650 0 4 |a water 
700 1 |a Cataldo, A.L.  |e author 
700 1 |a Ebner, J.  |e author 
700 1 |a Jungbauer, A.  |e author 
700 1 |a Kastenhofer, J.  |e author 
700 1 |a Sedlmayr, V.L.  |e author 
700 1 |a Spadiut, O.  |e author 
773 |t Journal of Chemical Technology and Biotechnology