A ten N6-methyladenosine-related long non-coding RNAs signature predicts prognosis of triple-negative breast cancer

Background: Patients with triple-negative breast cancer (TNBC) face a major challenge of the poor prognosis, and N6-methyladenosine-(m6A) mediated regulation in cancer has been proposed. Therefore, this study aimed to explore the prognostic roles of m6A-related long non-coding RNAs (LncRNAs) in TNBC...

Full description

Bibliographic Details
Main Authors: Cai, Y. (Author), Li, M. (Author), Wu, J. (Author), Zhao, G. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 04764nam a2201021Ia 4500
001 10.1002-jcla.23779
008 220427s2021 CNT 000 0 und d
020 |a 08878013 (ISSN) 
245 1 0 |a A ten N6-methyladenosine-related long non-coding RNAs signature predicts prognosis of triple-negative breast cancer 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/jcla.23779 
520 3 |a Background: Patients with triple-negative breast cancer (TNBC) face a major challenge of the poor prognosis, and N6-methyladenosine-(m6A) mediated regulation in cancer has been proposed. Therefore, this study aimed to explore the prognostic roles of m6A-related long non-coding RNAs (LncRNAs) in TNBC. Methods: Clinical information and expression data of TNBC samples were collected from TCGA and GEO databases. Pearson correlation, univariate, and multivariate Cox regression analysis were employed to identify independent prognostic m6A-related LncRNAs to construct the prognostic score (PS) risk model. Receiver operating characteristic (ROC) curve was used to evaluate the performance of PS risk model. A competing endogenous RNA (ceRNA) network was established for the functional analysis on targeted mRNAs. Results: We identified 10 independent prognostic m6A-related LncRNAs (SAMD12-AS1, BVES-AS1, LINC00593, MIR205HG, LINC00571, ANKRD10-IT1, CIRBP-AS1, SUCLG2-AS1, BLACAT1, and HOXB-AS1) and established a PS risk model accordingly. Relevant results suggested that TNBC patients with lower PS had better overall survival status, and ROC curves proved that the PS model had better prognostic abilities with the AUC of 0.997 and 0.864 in TCGA and GSE76250 datasets, respectively. Recurrence and PS model status were defined as independent prognostic factors of TNBC. These ten LncRNAs were all differentially expressed in high-risk TNBC compared with controls. The ceRNA network revealed the regulatory axes for nine key LncRNAs, and mRNAs in the network were identified to function in pathways of cell communication, signaling transduction and cancer. Conclusion: Our findings proposed a ten-m6A-related LncRNAs as potential biomarkers to predict the prognostic risk of TNBC. © 2021 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC 
650 0 4 |a 6 n methyladenosine 
650 0 4 |a adenosine 
650 0 4 |a Adenosine 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a ANKRD10 IT1 gene 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a Biomarkers, Tumor 
650 0 4 |a BLACAT1 gene 
650 0 4 |a BVES AS1 gene 
650 0 4 |a cancer prognosis 
650 0 4 |a cell communication 
650 0 4 |a ceRNA network 
650 0 4 |a CIRBP AS1 gene 
650 0 4 |a comparative study 
650 0 4 |a competing endogenous RNA 
650 0 4 |a controlled study 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a gene expression 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation, Neoplastic 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a gene targeting 
650 0 4 |a genetics 
650 0 4 |a HOXB AS1 gene 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human tissue 
650 0 4 |a Humans 
650 0 4 |a Kaplan Meier method 
650 0 4 |a Kaplan-Meier Estimate 
650 0 4 |a LINC00571 gene 
650 0 4 |a LINC00593 gene 
650 0 4 |a long non-coding RNA 
650 0 4 |a long untranslated RNA 
650 0 4 |a long untranslated RNA 
650 0 4 |a major clinical study 
650 0 4 |a medical information 
650 0 4 |a messenger RNA 
650 0 4 |a middle aged 
650 0 4 |a Middle Aged 
650 0 4 |a MIR205HG gene 
650 0 4 |a Models, Genetic 
650 0 4 |a mortality 
650 0 4 |a N6-methyladenosine 
650 0 4 |a N-methyladenosine 
650 0 4 |a oncogene 
650 0 4 |a overall survival 
650 0 4 |a pathogenesis 
650 0 4 |a prediction 
650 0 4 |a prognosis 
650 0 4 |a Prognosis 
650 0 4 |a prognostic signature 
650 0 4 |a receiver operating characteristic 
650 0 4 |a RNA 
650 0 4 |a RNA, Long Noncoding 
650 0 4 |a ROC Curve 
650 0 4 |a SAMD12 AS1 gene 
650 0 4 |a signal transduction 
650 0 4 |a SUCLG2 AS1 gene 
650 0 4 |a triple negative breast cancer 
650 0 4 |a triple negative breast cancer 
650 0 4 |a Triple Negative Breast Neoplasms 
650 0 4 |a triple-negative breast cancer 
650 0 4 |a tumor marker 
650 0 4 |a unclassified drug 
700 1 |a Cai, Y.  |e author 
700 1 |a Li, M.  |e author 
700 1 |a Wu, J.  |e author 
700 1 |a Zhao, G.  |e author 
773 |t Journal of Clinical Laboratory Analysis