Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson's disease with and without mild cognitive impairment

Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to dementia more frequently than those with normal cognition (PD-N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD-M, and exp...

Full description

Bibliographic Details
Main Authors: Gong, Q. (Author), Kemp, G.J (Author), Lei, D. (Author), Li, J. (Author), Li, N. (Author), Li, W. (Author), Peng, J. (Author), Peng, R. (Author), Qin, K. (Author), Suo, X. (Author), Yang, J. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04560nam a2200961Ia 4500
001 10.1002-hbm.25606
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson's disease with and without mild cognitive impairment 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25606 
520 3 |a Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to dementia more frequently than those with normal cognition (PD-N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD-M, and explore their potential diagnostic value. Twenty-four PD-M patients, 17 PD-N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network-based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD-M showed increased local efficiency (p =.001) in their morphological networks, while PD-N showed decreased normalized path length (p =.008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD-M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD-M), while PD-M, but not PD-N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD-N and HC (90%), PD-M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD-M, whereas frontoparietal disruption has diagnostic potential. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a Article 
650 0 4 |a brain cortex 
650 0 4 |a brain region 
650 0 4 |a cerebellar network 
650 0 4 |a cerebellum 
650 0 4 |a Cerebellum 
650 0 4 |a Cerebral Cortex 
650 0 4 |a clinical article 
650 0 4 |a cognitive defect 
650 0 4 |a Cognitive Dysfunction 
650 0 4 |a complication 
650 0 4 |a connectome 
650 0 4 |a connectome 
650 0 4 |a controlled study 
650 0 4 |a data analysis software 
650 0 4 |a default mode network 
650 0 4 |a Default Mode Network 
650 0 4 |a diagnostic accuracy 
650 0 4 |a diagnostic imaging 
650 0 4 |a diagnostic test accuracy study 
650 0 4 |a diagnostic value 
650 0 4 |a disease classification 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a frontal gyrus 
650 0 4 |a frontoparietal network 
650 0 4 |a gray matter 
650 0 4 |a gray matter 
650 0 4 |a gray matter 
650 0 4 |a Gray Matter 
650 0 4 |a gray matter volume 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a lingual gyrus 
650 0 4 |a magnetic resonance imaging 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a middle aged 
650 0 4 |a Middle Aged 
650 0 4 |a mild cognitive impairment 
650 0 4 |a mild cognitive impairment 
650 0 4 |a nerve cell network 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a neuropsychological test 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a parietal gyrus 
650 0 4 |a Parkinson disease 
650 0 4 |a Parkinson disease 
650 0 4 |a Parkinson Disease 
650 0 4 |a Parkinson's disease 
650 0 4 |a pathology 
650 0 4 |a pathophysiology 
650 0 4 |a psychoradiology 
650 0 4 |a support vector machine 
700 1 |a Gong, Q.  |e author 
700 1 |a Kemp, G.J.  |e author 
700 1 |a Lei, D.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Li, N.  |e author 
700 1 |a Li, W.  |e author 
700 1 |a Peng, J.  |e author 
700 1 |a Peng, R.  |e author 
700 1 |a Qin, K.  |e author 
700 1 |a Suo, X.  |e author 
700 1 |a Yang, J.  |e author 
773 |t Human Brain Mapping