Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by TMS

Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impu...

Full description

Bibliographic Details
Main Authors: Barth, B. (Author), Deppermann, S. (Author), Ehlis, A.-C (Author), Fallgatter, A.J (Author), Rohe, T. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03963nam a2200733Ia 4500
001 10.1002-hbm.25376
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by TMS 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25376 
520 3 |a Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a article 
650 0 4 |a attention 
650 0 4 |a Attention 
650 0 4 |a brain cortex 
650 0 4 |a Cerebral Cortex 
650 0 4 |a clinical article 
650 0 4 |a controlled study 
650 0 4 |a double blind procedure 
650 0 4 |a Double-Blind Method 
650 0 4 |a drug efficacy 
650 0 4 |a electroencephalogram 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a executive function 
650 0 4 |a Executive Function 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a frequency analysis 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a Impulsive Behavior 
650 0 4 |a impulsiveness 
650 0 4 |a impulsiveness 
650 0 4 |a impulsivity 
650 0 4 |a intertrial phase coherence 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a performance monitoring 
650 0 4 |a physiology 
650 0 4 |a psychomotor performance 
650 0 4 |a Psychomotor Performance 
650 0 4 |a randomized controlled trial 
650 0 4 |a reaction time 
650 0 4 |a Reaction Time 
650 0 4 |a single-trial phase behavior coupling 
650 0 4 |a theta rhythm 
650 0 4 |a Theta Rhythm 
650 0 4 |a time-frequency analysis 
650 0 4 |a transcranial magnetic stimulation 
650 0 4 |a transcranial magnetic stimulation 
650 0 4 |a Transcranial Magnetic Stimulation 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Barth, B.  |e author 
700 1 |a Deppermann, S.  |e author 
700 1 |a Ehlis, A.-C.  |e author 
700 1 |a Fallgatter, A.J.  |e author 
700 1 |a Rohe, T.  |e author 
773 |t Human Brain Mapping