A method to mitigate spatio-temporally varying task-correlated motion artifacts from overt-speech fMRI paradigms in aphasia

Quantifying accurate functional magnetic resonance imaging (fMRI) activation maps can be dampened by spatio-temporally varying task-correlated motion (TCM) artifacts in certain task paradigms (e.g., overt speech). Such real-world tasks are relevant to characterize longitudinal brain reorganization p...

Full description

Bibliographic Details
Main Authors: Crosson, B. (Author), Gale, M.K (Author), Gopinath, K. (Author), Ji, B. (Author), Krishnamurthy, L.C (Author), Krishnamurthy, V. (Author), Meadows, M.L (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04770nam a2201069Ia 4500
001 10.1002-hbm.25280
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a A method to mitigate spatio-temporally varying task-correlated motion artifacts from overt-speech fMRI paradigms in aphasia 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25280 
520 3 |a Quantifying accurate functional magnetic resonance imaging (fMRI) activation maps can be dampened by spatio-temporally varying task-correlated motion (TCM) artifacts in certain task paradigms (e.g., overt speech). Such real-world tasks are relevant to characterize longitudinal brain reorganization poststroke, and removal of TCM artifacts is vital for improved clinical interpretation and translation. In this study, we developed a novel independent component analysis (ICA)-based approach to denoise spatio-temporally varying TCM artifacts in 14 persons with aphasia who participated in an overt language fMRI paradigm. We compared the new methodology with other existing approaches such as “standard” volume registration, nonselective motion correction ICA packages (i.e., AROMA), and combining the novel approach with AROMA. Results show that the proposed methodology outperforms other approaches in removing TCM-related false positive activity (i.e., improved detectability power) with high spatial specificity. The proposed method was also effective in maintaining a balance between removal of TCM-related trial-by-trial variability and signal retention. Finally, we show that the TCM artifact is related to clinical metrics, such as speech fluency and aphasia severity, and the implication of TCM denoising on such relationship is also discussed. Overall, our work suggests that routine bulkhead motion based denoising packages cannot effectively account for spatio-temporally varying TCM. Further, the proposed TCM denoising approach requires a one-time front-end effort to hand label and train the classifiers that can be cost-effectively utilized to denoise large clinical data sets. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a Aged, 80 and over 
650 0 4 |a aphasia 
650 0 4 |a aphasia 
650 0 4 |a aphasia 
650 0 4 |a Aphasia 
650 0 4 |a Article 
650 0 4 |a artifact 
650 0 4 |a Artifacts 
650 0 4 |a BOLD signal 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a cerebrovascular accident 
650 0 4 |a classifier 
650 0 4 |a clinical article 
650 0 4 |a diagnostic imaging 
650 0 4 |a disease severity 
650 0 4 |a dorsolateral prefrontal cortex 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a functional neuroimaging 
650 0 4 |a functional neuroimaging 
650 0 4 |a Functional Neuroimaging 
650 0 4 |a gray matter 
650 0 4 |a head movement 
650 0 4 |a Head Movements 
650 0 4 |a hemodynamics 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a ICA denoising 
650 0 4 |a image artifact 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a image registration 
650 0 4 |a independent component analysis 
650 0 4 |a left hemisphere 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a middle aged 
650 0 4 |a Middle Aged 
650 0 4 |a motion 
650 0 4 |a motor 
650 0 4 |a neglect 
650 0 4 |a noise reduction 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a pars opercularis 
650 0 4 |a pars triangularis 
650 0 4 |a pathophysiology 
650 0 4 |a physiology 
650 0 4 |a principal component analysis 
650 0 4 |a Principal Component Analysis 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a right hemisphere 
650 0 4 |a sensitivity and specificity 
650 0 4 |a signal noise ratio 
650 0 4 |a spatiotemporal analysis 
650 0 4 |a speech analysis 
650 0 4 |a striate cortex 
650 0 4 |a stroke 
650 0 4 |a stroke survivor 
650 0 4 |a superior frontal gyrus 
650 0 4 |a superior temporal gyrus 
650 0 4 |a task fMRI 
650 0 4 |a task performance 
650 0 4 |a very elderly 
650 0 4 |a Western aphasia battery 
650 0 4 |a white matter 
700 1 |a Crosson, B.  |e author 
700 1 |a Gale, M.K.  |e author 
700 1 |a Gopinath, K.  |e author 
700 1 |a Ji, B.  |e author 
700 1 |a Krishnamurthy, L.C.  |e author 
700 1 |a Krishnamurthy, V.  |e author 
700 1 |a Meadows, M.L.  |e author 
773 |t Human Brain Mapping