Shared and distinct global signal topography disturbances in subcortical and cortical networks in human epilepsy

Epilepsy is a common brain network disorder associated with disrupted large-scale excitatory and inhibitory neural interactions. Recent resting-state fMRI evidence indicates that global signal (GS) fluctuations that have commonly been ignored are linked to neural activity. However, the mechanisms un...

Full description

Bibliographic Details
Main Authors: Chen, H. (Author), Li, R. (Author), Liao, W. (Author), Lu, G. (Author), Wang, H. (Author), Wang, L. (Author), Wang, X. (Author), Zhang, L. (Author), Zhang, Z. (Author), Zou, T. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04476nam a2201009Ia 4500
001 10.1002-hbm.25231
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Shared and distinct global signal topography disturbances in subcortical and cortical networks in human epilepsy 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25231 
520 3 |a Epilepsy is a common brain network disorder associated with disrupted large-scale excitatory and inhibitory neural interactions. Recent resting-state fMRI evidence indicates that global signal (GS) fluctuations that have commonly been ignored are linked to neural activity. However, the mechanisms underlying the altered global pattern of fMRI spontaneous fluctuations in epilepsy remain unclear. Here, we quantified GS topography using beta weights obtained from a multiple regression model in a large group of epilepsy with different subtypes (98 focal temporal epilepsy; 116 generalized epilepsy) and healthy population (n = 151). We revealed that the nonuniformly distributed GS topography across association and sensory areas in healthy controls was significantly shifted in patients. Particularly, such shifts of GS topography disturbances were more widespread and bilaterally distributed in the midbrain, cerebellum, visual cortex, and medial and orbital cortex in generalized epilepsy, whereas in focal temporal epilepsy, these networks spread beyond the temporal areas but mainly remain lateralized. Moreover, we found that these abnormal GS topography patterns were likely to evolve over the course of a longer epilepsy disease. Our study demonstrates that epileptic processes can potentially affect global excitation/inhibition balance and shift the normal GS topological distribution. These progressive topographical GS disturbances in subcortical–cortical networks may underlie pathophysiological mechanisms of global fluctuations in human epilepsy. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adolescent 
650 0 4 |a Adolescent 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a Article 
650 0 4 |a beta rhythm 
650 0 4 |a brain cortex 
650 0 4 |a cerebellum 
650 0 4 |a Cerebellum 
650 0 4 |a Cerebral Cortex 
650 0 4 |a cerebrospinal fluid 
650 0 4 |a controlled study 
650 0 4 |a diagnostic imaging 
650 0 4 |a disease duration 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a epilepsy 
650 0 4 |a epilepsy 
650 0 4 |a Epilepsy 
650 0 4 |a epileptic patient 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fluctuations 
650 0 4 |a frontal cortex 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a generalized epilepsy 
650 0 4 |a generalized tonic clonic seizure 
650 0 4 |a global signal 
650 0 4 |a global signal topography 
650 0 4 |a gray matter 
650 0 4 |a head movement 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a idiopathic generalized epilepsy 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a medial frontal cortex 
650 0 4 |a mesencephalon 
650 0 4 |a Mesencephalon 
650 0 4 |a middle temporal gyrus 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nervous system parameters 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a orbital cortex 
650 0 4 |a parahippocampal gyrus 
650 0 4 |a pathophysiology 
650 0 4 |a pons 
650 0 4 |a prefrontal cortex 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a resting-state fMRI 
650 0 4 |a sensorimotor network 
650 0 4 |a subcortical–cortical network 
650 0 4 |a superior temporal gyrus 
650 0 4 |a tegmentum 
650 0 4 |a temporal lobe epilepsy 
650 0 4 |a tonic clonic seizure 
650 0 4 |a visual cortex 
650 0 4 |a white matter 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Chen, H.  |e author 
700 1 |a Li, R.  |e author 
700 1 |a Liao, W.  |e author 
700 1 |a Lu, G.  |e author 
700 1 |a Wang, H.  |e author 
700 1 |a Wang, L.  |e author 
700 1 |a Wang, X.  |e author 
700 1 |a Zhang, L.  |e author 
700 1 |a Zhang, Z.  |e author 
700 1 |a Zou, T.  |e author 
773 |t Human Brain Mapping