Using Galaxy to Perform Large-Scale Interactive Data Analyses—An Update

Modern biology continues to become increasingly computational. Datasets are becoming progressively larger, more complex, and more abundant. The computational savviness necessary to analyze these data creates an ongoing obstacle for experimental biologists. Galaxy (galaxyproject.org) provides access...

Full description

Bibliographic Details
Main Authors: Afgan, E. (Author), Blankenberg, D. (Author), Bouvier, D. (Author), Clements, D. (Author), Hillman-Jackson, J. (Author), Lariviere, D. (Author), Nekrutenko, A. (Author), Ostrovsky, A. (Author), Schatz, M.C (Author), Taylor, J. (Author), Team, T.G (Author)
Format: Article
Language:English
Published: Blackwell Publishing Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02710nam a2200529Ia 4500
001 10.1002-cpz1.31
008 220427s2021 CNT 000 0 und d
020 |a 26911299 (ISSN) 
245 1 0 |a Using Galaxy to Perform Large-Scale Interactive Data Analyses—An Update 
260 0 |b Blackwell Publishing Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/cpz1.31 
520 3 |a Modern biology continues to become increasingly computational. Datasets are becoming progressively larger, more complex, and more abundant. The computational savviness necessary to analyze these data creates an ongoing obstacle for experimental biologists. Galaxy (galaxyproject.org) provides access to computational biology tools in a web-based interface. It also provides access to major public biological data repositories, allowing private data to be combined with public datasets. Galaxy is hosted on high-capacity servers worldwide and is accessible for free, with an option to be installed locally. This article demonstrates how to employ Galaxy to perform biologically relevant analyses on publicly available datasets. These protocols use both standard and custom tools, serving as a tutorial and jumping-off point for more intensive and/or more specific analyses using Galaxy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Finding human coding exons with highest SNP density. Basic Protocol 2: Calling peaks for ChIP-seq data. Basic Protocol 3: Compare datasets using genomic coordinates. Basic Protocol 4: Working with multiple alignments. Basic Protocol 5: Single cell RNA-seq. © 2021 Wiley Periodicals LLC 
650 0 4 |a article 
650 0 4 |a bioinformatics 
650 0 4 |a biologist 
650 0 4 |a biology 
650 0 4 |a chromatin immunoprecipitation sequencing 
650 0 4 |a computational biology 
650 0 4 |a Computational Biology 
650 0 4 |a data analysis 
650 0 4 |a Data Analysis 
650 0 4 |a exon 
650 0 4 |a Galaxy 
650 0 4 |a genome 
650 0 4 |a Genome 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a jumping 
650 0 4 |a single cell RNA seq 
650 0 4 |a single nucleotide polymorphism 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a web application 
700 1 |a Afgan, E.  |e author 
700 1 |a Blankenberg, D.  |e author 
700 1 |a Bouvier, D.  |e author 
700 1 |a Clements, D.  |e author 
700 1 |a Hillman-Jackson, J.  |e author 
700 1 |a Lariviere, D.  |e author 
700 1 |a Nekrutenko, A.  |e author 
700 1 |a Ostrovsky, A.  |e author 
700 1 |a Schatz, M.C.  |e author 
700 1 |a Taylor, J.  |e author 
700 1 |a Team, T.G.  |e author 
773 |t Current Protocols