An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations

The choice of appropriate boundary conditions is a fundamental step in computational fluid dynamics (CFD) simulations of the cardiovascular system. Boundary conditions, in fact, highly affect the computed pressure and flow rates, and consequently haemodynamic indicators such as wall shear stress (WS...

Full description

Bibliographic Details
Main Authors: Ballarin, F. (Author), Fevola, E. (Author), Fremes, S. (Author), Grivet-Talocia, S. (Author), Jiménez-Juan, L. (Author), Rozza, G. (Author), Triverio, P. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03115nam a2200601Ia 4500
001 10.1002-cnm.3516
008 220427s2021 CNT 000 0 und d
020 |a 20407939 (ISSN) 
245 1 0 |a An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/cnm.3516 
520 3 |a The choice of appropriate boundary conditions is a fundamental step in computational fluid dynamics (CFD) simulations of the cardiovascular system. Boundary conditions, in fact, highly affect the computed pressure and flow rates, and consequently haemodynamic indicators such as wall shear stress (WSS), which are of clinical interest. Devising automated procedures for the selection of boundary conditions is vital to achieve repeatable simulations. However, the most common techniques do not automatically assimilate patient-specific data, relying instead on expensive and time-consuming manual tuning procedures. In this work, we propose a technique for the automated estimation of outlet boundary conditions based on optimal control. The values of resistive boundary conditions are set as control variables and optimized to match available patient-specific data. Experimental results on four aortic arches demonstrate that the proposed framework can assimilate 4D-Flow MRI data more accurately than two other common techniques based on Murray's law and Ohm's law. © 2021 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. 
650 0 4 |a Aorta, Thoracic 
650 0 4 |a Automated estimation 
650 0 4 |a Automated procedures 
650 0 4 |a biological model 
650 0 4 |a blood flow velocity 
650 0 4 |a Blood Flow Velocity 
650 0 4 |a Boundary conditions 
650 0 4 |a cardiovascular modeling 
650 0 4 |a Cardiovascular simulations 
650 0 4 |a Cardiovascular system 
650 0 4 |a Computational fluid dynamics 
650 0 4 |a Computational fluid dynamics simulations 
650 0 4 |a Control variable 
650 0 4 |a data assimilation 
650 0 4 |a haemodynamics modeling 
650 0 4 |a hemodynamics 
650 0 4 |a Hemodynamics 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hydrodynamics 
650 0 4 |a Hydrodynamics 
650 0 4 |a mechanical stress 
650 0 4 |a Models, Cardiovascular 
650 0 4 |a Murray's law 
650 0 4 |a optimal control 
650 0 4 |a Optimal controls 
650 0 4 |a Outlet boundary condition 
650 0 4 |a patient-specific simulations 
650 0 4 |a Shear flow 
650 0 4 |a Shear stress 
650 0 4 |a Stress, Mechanical 
650 0 4 |a thoracic aorta 
650 0 4 |a Wall shear stress 
700 1 |a Ballarin, F.  |e author 
700 1 |a Fevola, E.  |e author 
700 1 |a Fremes, S.  |e author 
700 1 |a Grivet-Talocia, S.  |e author 
700 1 |a Jiménez-Juan, L.  |e author 
700 1 |a Rozza, G.  |e author 
700 1 |a Triverio, P.  |e author 
773 |t International Journal for Numerical Methods in Biomedical Engineering