Optimizing Lipid Nanoparticles for Delivery in Primates

Lipid nanoparticles (LNPs) are clinically proven to successfully deliver both small interfering RNA (siRNA) therapeutics and larger mRNA payloads for prophylactic vaccine applications. Non-human primates (NHPs) are generally considered to be the most predictive of human responses. However, for ethic...

Full description

Bibliographic Details
Main Authors: Heyes, J. (Author), Lam, K. (Author), Leung, A. (Author), Lutwyche, P. (Author), Reid, S. (Author), Schreiner, P. (Author), Stainton, P. (Author), Yaworski, E. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2023
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 03015nam a2200517Ia 4500
001 10.1002-adma.202211420
008 230526s2023 CNT 000 0 und d
020 |a 09359648 (ISSN) 
245 1 0 |a Optimizing Lipid Nanoparticles for Delivery in Primates 
260 0 |b John Wiley and Sons Inc  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/adma.202211420 
520 3 |a Lipid nanoparticles (LNPs) are clinically proven to successfully deliver both small interfering RNA (siRNA) therapeutics and larger mRNA payloads for prophylactic vaccine applications. Non-human primates (NHPs) are generally considered to be the most predictive of human responses. However, for ethical and economic reasons, LNP compositions have historically been optimized in rodents. It has been difficult to translate LNP potency data from rodents to NHPs for intravenously (IV) administered products in particular. This presents a major challenge for preclinical drug development. An attempt to investigate LNP parameters, which have historically been optimized in rodents, is carried out, and seemingly innocuous changes are found to result in large potency differences between species. For example, the ideal particle size for NHPs (50–60 nm) is found to be smaller than for rodents (70–80 nm). Surface chemistry requirements are also different, with almost double the amount of poly(ethylene glycol) (PEG)-conjugated lipid needed for maximal potency in NHPs. By optimizing these two parameters, approximately eight-fold increase in protein expression from intravenously administered messenger RNA (mRNA)-LNP in NHP is gained. The optimized formulations are well tolerated when administered repeatedly with no loss of potency. This advancement enables the design of optimal LNP products for clinical development. © 2023 Genevant Sciences Corporation. Advanced Materials published by Wiley-VCH GmbH. 
650 0 4 |a Controlled drug delivery 
650 0 4 |a Human response 
650 0 4 |a lipid nanoparticles 
650 0 4 |a Lipid nanoparticles 
650 0 4 |a Mammals 
650 0 4 |a Messenger RNA 
650 0 4 |a Nanoparticles 
650 0 4 |a nanotechnology 
650 0 4 |a Non-human primate 
650 0 4 |a nucleic acid 
650 0 4 |a particle size 
650 0 4 |a Particle size 
650 0 4 |a Particles sizes 
650 0 4 |a PEG shielding 
650 0 4 |a Polyethylene glycols 
650 0 4 |a potency translation 
650 0 4 |a Potency translation 
650 0 4 |a Product design 
650 0 4 |a RNA 
650 0 4 |a RNA therapeutics 
650 0 4 |a Small interfering RNA 
650 0 4 |a Surface chemistry 
650 0 4 |a Targeted drug delivery 
650 0 4 |a Therapeutic 
650 0 4 |a therapeutics 
700 1 0 |a Heyes, J.  |e author 
700 1 0 |a Lam, K.  |e author 
700 1 0 |a Leung, A.  |e author 
700 1 0 |a Lutwyche, P.  |e author 
700 1 0 |a Reid, S.  |e author 
700 1 0 |a Schreiner, P.  |e author 
700 1 0 |a Stainton, P.  |e author 
700 1 0 |a Yaworski, E.  |e author 
773 |t Advanced Materials  |x 09359648 (ISSN)