|
|
|
|
LEADER |
03314nam a2200709Ia 4500 |
001 |
10.1002-adma.202210894 |
008 |
230526s2023 CNT 000 0 und d |
020 |
|
|
|a 09359648 (ISSN)
|
245 |
1 |
0 |
|a Giant Nonlinear Optical Response via Coherent Stacking of In-Plane Ferroelectric Layers
|
260 |
|
0 |
|b John Wiley and Sons Inc
|c 2023
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1002/adma.202210894
|
520 |
3 |
|
|a Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second-harmonic fields and the as-resulted second-harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in-plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on-chip nonlinear optical components and nonvolatile memory devices. © 2023 Wiley-VCH GmbH.
|
650 |
0 |
4 |
|a Domain walls
|
650 |
0 |
4 |
|a ferroelectric domains
|
650 |
0 |
4 |
|a Ferroelectric domains
|
650 |
0 |
4 |
|a Ferroelectric layers
|
650 |
0 |
4 |
|a Ferroelectric materials
|
650 |
0 |
4 |
|a ferroelectric stacking
|
650 |
0 |
4 |
|a Ferroelectric stacking
|
650 |
0 |
4 |
|a Ferroelectricity
|
650 |
0 |
4 |
|a Ferroelectrics materials
|
650 |
0 |
4 |
|a Group-IV
|
650 |
0 |
4 |
|a group-IV monochalcogenides
|
650 |
0 |
4 |
|a Group-IV monochalcogenides
|
650 |
0 |
4 |
|a Harmonic analysis
|
650 |
0 |
4 |
|a Harmonic generation
|
650 |
0 |
4 |
|a In-plane ferroelectric material
|
650 |
0 |
4 |
|a in-plane ferroelectric materials
|
650 |
0 |
4 |
|a Layered semiconductors
|
650 |
0 |
4 |
|a Monochalcogenides
|
650 |
0 |
4 |
|a Monolayers
|
650 |
0 |
4 |
|a Nonlinear optics
|
650 |
0 |
4 |
|a Optical materials
|
650 |
0 |
4 |
|a physical vapor deposition
|
650 |
0 |
4 |
|a Physical vapor deposition
|
650 |
0 |
4 |
|a Physical vapour deposition
|
650 |
0 |
4 |
|a second-harmonic generation
|
650 |
0 |
4 |
|a Selenium compounds
|
650 |
0 |
4 |
|a SnSe
|
650 |
0 |
4 |
|a Stackings
|
650 |
0 |
4 |
|a Tin compounds
|
650 |
0 |
4 |
|a Tungsten compounds
|
650 |
0 |
4 |
|a Van der Waals forces
|
700 |
1 |
0 |
|a Akey, A.J.
|e author
|
700 |
1 |
0 |
|a Chiu, M.-H.
|e author
|
700 |
1 |
0 |
|a Gardener, J.A.
|e author
|
700 |
1 |
0 |
|a Han, Y.
|e author
|
700 |
1 |
0 |
|a Ji, X.
|e author
|
700 |
1 |
0 |
|a Kong, J.
|e author
|
700 |
1 |
0 |
|a Lin, Y.
|e author
|
700 |
1 |
0 |
|a Ling, X.
|e author
|
700 |
1 |
0 |
|a Luo, Y.
|e author
|
700 |
1 |
0 |
|a Mao, N.
|e author
|
700 |
1 |
0 |
|a Park, J.-H.
|e author
|
700 |
1 |
0 |
|a Pieshkov, T.S.
|e author
|
700 |
1 |
0 |
|a Qian, X.
|e author
|
700 |
1 |
0 |
|a Shi, C.
|e author
|
700 |
1 |
0 |
|a Tang, H.-L.
|e author
|
700 |
1 |
0 |
|a Tisdale, W.A.
|e author
|
700 |
1 |
0 |
|a Tung, V.
|e author
|
700 |
1 |
0 |
|a Wilson, W.L.
|e author
|
773 |
|
|
|t Advanced Materials
|x 09359648 (ISSN)
|