Giant Nonlinear Optical Response via Coherent Stacking of In-Plane Ferroelectric Layers

Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelec...

Full description

Bibliographic Details
Main Authors: Akey, A.J (Author), Chiu, M.-H (Author), Gardener, J.A (Author), Han, Y. (Author), Ji, X. (Author), Kong, J. (Author), Lin, Y. (Author), Ling, X. (Author), Luo, Y. (Author), Mao, N. (Author), Park, J.-H (Author), Pieshkov, T.S (Author), Qian, X. (Author), Shi, C. (Author), Tang, H.-L (Author), Tisdale, W.A (Author), Tung, V. (Author), Wilson, W.L (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03314nam a2200709Ia 4500
001 10.1002-adma.202210894
008 230526s2023 CNT 000 0 und d
020 |a 09359648 (ISSN) 
245 1 0 |a Giant Nonlinear Optical Response via Coherent Stacking of In-Plane Ferroelectric Layers 
260 0 |b John Wiley and Sons Inc  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/adma.202210894 
520 3 |a Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second-harmonic fields and the as-resulted second-harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in-plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on-chip nonlinear optical components and nonvolatile memory devices. © 2023 Wiley-VCH GmbH. 
650 0 4 |a Domain walls 
650 0 4 |a ferroelectric domains 
650 0 4 |a Ferroelectric domains 
650 0 4 |a Ferroelectric layers 
650 0 4 |a Ferroelectric materials 
650 0 4 |a ferroelectric stacking 
650 0 4 |a Ferroelectric stacking 
650 0 4 |a Ferroelectricity 
650 0 4 |a Ferroelectrics materials 
650 0 4 |a Group-IV 
650 0 4 |a group-IV monochalcogenides 
650 0 4 |a Group-IV monochalcogenides 
650 0 4 |a Harmonic analysis 
650 0 4 |a Harmonic generation 
650 0 4 |a In-plane ferroelectric material 
650 0 4 |a in-plane ferroelectric materials 
650 0 4 |a Layered semiconductors 
650 0 4 |a Monochalcogenides 
650 0 4 |a Monolayers 
650 0 4 |a Nonlinear optics 
650 0 4 |a Optical materials 
650 0 4 |a physical vapor deposition 
650 0 4 |a Physical vapor deposition 
650 0 4 |a Physical vapour deposition 
650 0 4 |a second-harmonic generation 
650 0 4 |a Selenium compounds 
650 0 4 |a SnSe 
650 0 4 |a Stackings 
650 0 4 |a Tin compounds 
650 0 4 |a Tungsten compounds 
650 0 4 |a Van der Waals forces 
700 1 0 |a Akey, A.J.  |e author 
700 1 0 |a Chiu, M.-H.  |e author 
700 1 0 |a Gardener, J.A.  |e author 
700 1 0 |a Han, Y.  |e author 
700 1 0 |a Ji, X.  |e author 
700 1 0 |a Kong, J.  |e author 
700 1 0 |a Lin, Y.  |e author 
700 1 0 |a Ling, X.  |e author 
700 1 0 |a Luo, Y.  |e author 
700 1 0 |a Mao, N.  |e author 
700 1 0 |a Park, J.-H.  |e author 
700 1 0 |a Pieshkov, T.S.  |e author 
700 1 0 |a Qian, X.  |e author 
700 1 0 |a Shi, C.  |e author 
700 1 0 |a Tang, H.-L.  |e author 
700 1 0 |a Tisdale, W.A.  |e author 
700 1 0 |a Tung, V.  |e author 
700 1 0 |a Wilson, W.L.  |e author 
773 |t Advanced Materials  |x 09359648 (ISSN)