Compound Context‐Aware Bayesian Inference Scheme for Smart IoT Environment

The objective of smart cities is to improve the quality of life for citizens by using Information and Communication Technology (ICT). The smart IoT environment consists of multiple sensor devices that continuously produce a large amount of data. In the IoT system, accurate inference from multi‐senso...

Full description

Bibliographic Details
Main Authors: Han, Y.-H (Author), Kim, J.-B (Author), Ullah, I. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02331nam a2200421Ia 4500
001 10-3390-s22083022
008 220425s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Compound Context‐Aware Bayesian Inference Scheme for Smart IoT Environment 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22083022 
520 3 |a The objective of smart cities is to improve the quality of life for citizens by using Information and Communication Technology (ICT). The smart IoT environment consists of multiple sensor devices that continuously produce a large amount of data. In the IoT system, accurate inference from multi‐sensor data is imperative to make a correct decision. Sensor data are often imprecise, resulting in low‐quality inference results and wrong decisions. Correspondingly, single‐context data are insufficient for making an accurate decision. In this paper, a novel compound context‐aware scheme is proposed based on Bayesian inference to achieve accurate fusion and inference from the sensory data. In the proposed scheme, multi‐sensor data are fused based on the relation and contexts of sensor data whether they are dependent or not on each other. Extensive computer simulations show that the proposed technique significantly improves the inference accuracy when it is compared to the other two representative Bayesian inference techniques. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Bayesia n networks 
650 0 4 |a Bayesian inference 
650 0 4 |a Bayesian networks 
650 0 4 |a Bayesian networks 
650 0 4 |a Context- awareness 
650 0 4 |a context awareness and sharing 
650 0 4 |a Context sharing 
650 0 4 |a Context-Aware 
650 0 4 |a Inference engines 
650 0 4 |a Internet of things 
650 0 4 |a Kalman filter 
650 0 4 |a Multi-sensor data 
650 0 4 |a Quality of life 
650 0 4 |a sensor data fusion 
650 0 4 |a Sensor data fusion 
650 0 4 |a Sensor networks 
650 0 4 |a Sensors data 
650 0 4 |a Sensors data fusion 
650 0 4 |a smart cities 
650 0 4 |a Smart city 
650 0 4 |a smart IoT environment 
650 0 4 |a Smart IoT environment 
700 1 |a Han, Y.-H.  |e author 
700 1 |a Kim, J.-B.  |e author 
700 1 |a Ullah, I.  |e author 
773 |t Sensors