A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing

Accurate fire identification can help to control fires. Traditional fire detection methods are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or in-terference from the outside environment. Meanwhile, most of the current deep learning methods are less discri...

Full description

Bibliographic Details
Main Authors: An, Q. (Author), Chen, X. (Author), Huang, W. (Author), Shi, R. (Author), Yang, Y. (Author), Zhang, J. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02724nam a2200457Ia 4500
001 10-3390-s22082929
008 220425s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22082929 
520 3 |a Accurate fire identification can help to control fires. Traditional fire detection methods are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or in-terference from the outside environment. Meanwhile, most of the current deep learning methods are less discriminative with respect to dynamic fire and have lower detection precision when a fire changes. Therefore, we propose a dynamic convolution YOLOv5 fire detection method using a video sequence. Our method first uses the K‐mean++ algorithm to optimize anchor box clustering; this significantly reduces the rate of classification error. Then, the dynamic convolution is intro-duced into the convolution layer of YOLOv5. Finally, pruning of the network heads of YOLOv5’s neck and head is carried out to improve the detection speed. Experimental results verify that the proposed dynamic convolution YOLOv5 fire detection method demonstrates better performance than the YOLOv5 method in recall, precision and F1‐score. In particular, compared with three other deep learning methods, the precision of the proposed algorithm is improved by 13.7%, 10.8% and 6.1%, respectively, while the F1‐score is improved by 15.8%, 12% and 3.8%, respectively. The method described in this paper is applicable not only to short‐range indoor fire identification but also to long‐range outdoor fire detection. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Clustering algorithms 
650 0 4 |a Computer vision 
650 0 4 |a Convolution 
650 0 4 |a Convolution neural network 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a detection 
650 0 4 |a Detection 
650 0 4 |a Detection models 
650 0 4 |a dynamic convolution 
650 0 4 |a Dynamic convolution 
650 0 4 |a F1 scores 
650 0 4 |a Fire detection 
650 0 4 |a Fire detectors 
650 0 4 |a Fire-detection method 
650 0 4 |a Fires 
650 0 4 |a Intelligent robots 
650 0 4 |a Learning methods 
650 0 4 |a Smoke 
650 0 4 |a YOLOv5 
650 0 4 |a YOLOv5 
700 1 |a An, Q.  |e author 
700 1 |a Chen, X.  |e author 
700 1 |a Huang, W.  |e author 
700 1 |a Shi, R.  |e author 
700 1 |a Yang, Y.  |e author 
700 1 |a Zhang, J.  |e author 
773 |t Sensors