First Principle Study on Electronic and Transport Properties of Finite-Length Nanoribbons and Nanodiscs for Selected Two-Dimensional Materials
Using the density functional theory, we calculate electronic states of various nanoribbons and nanodiscs formed from selected two-dimensional materials, such as graphene, silicene, and hexagonal boron nitride. The main objective of the analysis is a search for zero-energy states in such systems, whi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | View Fulltext in Publisher |
Summary: | Using the density functional theory, we calculate electronic states of various nanoribbons and nanodiscs formed from selected two-dimensional materials, such as graphene, silicene, and hexagonal boron nitride. The main objective of the analysis is a search for zero-energy states in such systems, which is an important issue as their presence indicates certain topological properties associated with chirality. The analysis is also supported by calculating transport properties. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
---|---|
ISBN: | 14203049 (ISSN) |
DOI: | 10.3390/molecules27072228 |