Behavioral Experience-Sampling Methods in Neuroimaging Studies With Movie and Narrative Stimuli

Movies and narratives are increasingly utilized as stimuli in functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and electroencephalography (EEG) studies. Emotional reactions of subjects, what they pay attention to, what they memorize, and their cognitive interpretations are...

Full description

Bibliographic Details
Main Authors: Ahveninen, J. (Author), Jääskeläinen, I.P (Author), Klucharev, V. (Author), Levy, J. (Author), Shestakova, A.N (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02747nam a2200493Ia 4500
001 10-3389-fnhum-2022-813684
008 220420s2022 CNT 000 0 und d
020 |a 16625161 (ISSN) 
245 1 0 |a Behavioral Experience-Sampling Methods in Neuroimaging Studies With Movie and Narrative Stimuli 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnhum.2022.813684 
520 3 |a Movies and narratives are increasingly utilized as stimuli in functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and electroencephalography (EEG) studies. Emotional reactions of subjects, what they pay attention to, what they memorize, and their cognitive interpretations are all examples of inner experiences that can differ between subjects during watching of movies and listening to narratives inside the scanner. Here, we review literature indicating that behavioral measures of inner experiences play an integral role in this new research paradigm via guiding neuroimaging analysis. We review behavioral methods that have been developed to sample inner experiences during watching of movies and listening to narratives. We also review approaches that allow for joint analyses of the behaviorally sampled inner experiences and neuroimaging data. We suggest that building neurophenomenological frameworks holds potential for solving the interrelationships between inner experiences and their neural underpinnings. Finally, we tentatively suggest that recent developments in machine learning approaches may pave way for inferring different classes of inner experiences directly from the neuroimaging data, thus potentially complementing the behavioral self-reports. Copyright © 2022 Jääskeläinen, Ahveninen, Klucharev, Shestakova and Levy. 
650 0 4 |a attention 
650 0 4 |a attention 
650 0 4 |a data analysis 
650 0 4 |a electroencephalography 
650 0 4 |a emotion 
650 0 4 |a emotion 
650 0 4 |a human 
650 0 4 |a language 
650 0 4 |a language 
650 0 4 |a machine learning 
650 0 4 |a memory 
650 0 4 |a memory 
650 0 4 |a movies 
650 0 4 |a narrative 
650 0 4 |a narratives 
650 0 4 |a naturalistic stimuli 
650 0 4 |a neuroimaging 
650 0 4 |a nonhuman 
650 0 4 |a personal experience 
650 0 4 |a phenomenology 
650 0 4 |a Review 
650 0 4 |a sampling 
650 0 4 |a self report 
650 0 4 |a social cognition 
650 0 4 |a social cognition 
650 0 4 |a stimulus 
700 1 0 |a Ahveninen, J.  |e author 
700 1 0 |a Jääskeläinen, I.P.  |e author 
700 1 0 |a Klucharev, V.  |e author 
700 1 0 |a Levy, J.  |e author 
700 1 0 |a Shestakova, A.N.  |e author 
773 |t Frontiers in Human Neuroscience