Summary: | Speckle statistics in ultrasound and optical coherence tomography have been studied using various distributions, including the Rayleigh, the K, and the more recently proposed Burr distribution. In this paper, we expand on the utility of the Burr distribution by first validating its theoretical framework with numerical simulations and then introducing a new local estimator to characterize sample tissues of liver, brain, and skin using optical coherence tomography. The spatially local estimates of the Burr distribution's power-law or exponent parameter enable a new type of parametric image. The simulation and experimental results confirm the potential for various applications of the Burr distribution in both basic science and clinical realms. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
|