Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon

The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. How...

Full description

Bibliographic Details
Main Authors: Dallo, C.M (Author), Gehl, M. (Author), Gertler, S. (Author), Lentine, A.L (Author), Otterstrom, N.T (Author), Pomerene, A.T (Author), Rakich, P.T (Author), Starbuck, A.L (Author), Trotter, D.C (Author)
Format: Article
Language:English
Published: Nature Research 2022
Online Access:View Fulltext in Publisher
LEADER 01912nam a2200229Ia 4500
001 10-1038-s41467-022-29590-0
008 220425s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-29590-0 
520 3 |a The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. However, it remains challenging to realize narrowband (∼MHz) filters needed for high-performance communications systems using integrated photonics. In this paper, we demonstrate all-silicon microwave-photonic notch filters with 50× higher spectral resolution than previously realized in silicon photonics. This enhanced performance is achieved by utilizing optomechanical interactions to access long-lived phonons, greatly extending available coherence times in silicon. We use a multi-port Brillouin-based optomechanical system to demonstrate ultra-narrowband (2.7 MHz) notch filters with high rejection (57 dB) and frequency tunability over a wide spectral band (6 GHz) within a microwave-photonic link. We accomplish this with an all-silicon waveguide system, using CMOS-compatible fabrication techniques. © 2022, The Author(s). 
700 1 |a Dallo, C.M.  |e author 
700 1 |a Gehl, M.  |e author 
700 1 |a Gertler, S.  |e author 
700 1 |a Lentine, A.L.  |e author 
700 1 |a Otterstrom, N.T.  |e author 
700 1 |a Pomerene, A.T.  |e author 
700 1 |a Rakich, P.T.  |e author 
700 1 |a Starbuck, A.L.  |e author 
700 1 |a Trotter, D.C.  |e author 
773 |t Nature Communications