Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

Joint registration of a stack of 2D histological sections to recover 3D structure (“3D histology reconstruction”) finds application in areas such as atlas building and validation of in vivo imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has...

Full description

Bibliographic Details
Main Authors: Casamitjana, A. (Author), Ferraris, S. (Author), Fischl, B. (Author), Iglesias, J.E (Author), Lorenzi, M. (Author), Modat, M. (Author), Peter, L. (Author), Stevens, A. (Author), Vercauteren, T. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04708nam a2200829Ia 4500
001 10-1016-j-media-2021-102265
008 220420s2022 CNT 000 0 und d
020 |a 13618415 (ISSN) 
245 1 0 |a Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.media.2021.102265 
520 3 |a Joint registration of a stack of 2D histological sections to recover 3D structure (“3D histology reconstruction”) finds application in areas such as atlas building and validation of in vivo imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as “banana effect” (straightening of curved structures) and “z-shift” (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. We consider two likelihood models: Gaussian (ℓ2 norm, which can be minimised in closed form) and Laplacian (ℓ1 norm, minimised with linear programming). Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest. © 2021 The Author(s) 
650 0 4 |a 3D histology reconstruction 
650 0 4 |a 3D reconstruction 
650 0 4 |a 3D Reconstruction 
650 0 4 |a Article 
650 0 4 |a artifact 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a Bayesian networks 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a Brain 
650 0 4 |a Brain atlas 
650 0 4 |a brain histology 
650 0 4 |a coloring agent 
650 0 4 |a Coloring Agents 
650 0 4 |a deep learning 
650 0 4 |a diagnostic imaging 
650 0 4 |a Dynamic programming 
650 0 4 |a Ex vivo MRI 
650 0 4 |a Ex vivo MRI 
650 0 4 |a ex vivo study 
650 0 4 |a Ex-vivo 
650 0 4 |a first cervical vertebra 
650 0 4 |a Histological section 
650 0 4 |a Histology 
650 0 4 |a Histology 
650 0 4 |a HTTP 
650 0 4 |a human 
650 0 4 |a Human brain 
650 0 4 |a Humans 
650 0 4 |a image reconstruction 
650 0 4 |a Image reconstruction 
650 0 4 |a Imaging, Three-Dimensional 
650 0 4 |a Inference engines 
650 0 4 |a kernel method 
650 0 4 |a Linear programming 
650 0 4 |a Linear programming 
650 0 4 |a Linear-programming 
650 0 4 |a Magnetic resonance 
650 0 4 |a Magnetic resonance imaging 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a Markov random field 
650 0 4 |a Multi-modal 
650 0 4 |a neuroimaging 
650 0 4 |a Nonlinear registration 
650 0 4 |a Nonlinear registration 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a Statistics 
650 0 4 |a three-dimensional imaging 
700 1 0 |a Casamitjana, A.  |e author 
700 1 0 |a Ferraris, S.  |e author 
700 1 0 |a Fischl, B.  |e author 
700 1 0 |a Iglesias, J.E.  |e author 
700 1 0 |a Lorenzi, M.  |e author 
700 1 0 |a Modat, M.  |e author 
700 1 0 |a Peter, L.  |e author 
700 1 0 |a Stevens, A.  |e author 
700 1 0 |a Vercauteren, T.  |e author 
773 |t Medical Image Analysis