Gridless Underdetermined Direction of Arrival Estimation in Sparse Circular Array Using Inverse Beamspace Transformation

Underdetermined DOA estimation, which means estimating more sources than sensors, is a challenging problem in the array signal processing community. This paper proposes a novel algorithm that extends the underdetermined DOA estimation in a Sparse Circular Array (SCA). We formulate this problem as a...

Full description

Bibliographic Details
Main Authors: Huang, Y. (Author), Tang, X. (Author), Tian, Y. (Author), Zhang, X. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
GLS
SCA
UCA
Online Access:View Fulltext in Publisher
LEADER 02475nam a2200457Ia 4500
001 0.3390-s22082864
008 220421s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Gridless Underdetermined Direction of Arrival Estimation in Sparse Circular Array Using Inverse Beamspace Transformation 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22082864 
520 3 |a Underdetermined DOA estimation, which means estimating more sources than sensors, is a challenging problem in the array signal processing community. This paper proposes a novel algorithm that extends the underdetermined DOA estimation in a Sparse Circular Array (SCA). We formulate this problem as a matrix completion problem. Meanwhile, we propose an inverse beamspace transformation combined with the Gridless SPICE (GLS) algorithm to complete the covariance matrix sampled by SCA. The DOAs are then obtained by solving a polynomial equation with using the Root-MUSIC algorithm. The proposed algorithm is named GSCA. Monte-Carlo simulations are performed to evaluate the GSCA algorithm, the spatial spectrum plots and RMSE curves demonstrated that the GSCA algorithm can give reasonable results of underdetermined DOA estimation in SCA. Meanwhile, the performance of the algorithm under various configurations of SCA is also evaluated. Numerical results indicated that the GSCA algorithm can provide access to solve the DOA estimation problem in Uniform Circular Array (UCA) when random sensor failures occur. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Array processing 
650 0 4 |a Beam space 
650 0 4 |a beamspace 
650 0 4 |a Beamspace transformations 
650 0 4 |a Circular arrays 
650 0 4 |a Covariance matrix 
650 0 4 |a Direction of arrival 
650 0 4 |a DOA estimation 
650 0 4 |a DOA estimation 
650 0 4 |a GLS 
650 0 4 |a gridless 
650 0 4 |a Gridless 
650 0 4 |a Gridless SPICE 
650 0 4 |a Intelligent systems 
650 0 4 |a Inverse problems 
650 0 4 |a Linear transformations 
650 0 4 |a Monte Carlo methods 
650 0 4 |a Polynomials 
650 0 4 |a SCA 
650 0 4 |a Sparse circular array 
650 0 4 |a UCA 
650 0 4 |a underdetermined 
650 0 4 |a Underdetermined 
650 0 4 |a Uniform circular arrays 
700 1 0 |a Huang, Y.  |e author 
700 1 0 |a Tang, X.  |e author 
700 1 0 |a Tian, Y.  |e author 
700 1 0 |a Zhang, X.  |e author 
773 |t Sensors