Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission

Miniaturization and wireless continuous glucose monitoring are key factors for the successful management of diabetes. Electrochemical sensors are very versatile and can be easily miniaturized for wireless glucose monitoring. The authors report a microneedle-based enzyme-free electrochemical wireless...

Full description

Bibliographic Details
Main Authors: Chinnadayyala, S.R (Author), Cho, S. (Author), Kim, Y.-J (Author), Le, H.T.N (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03555nam a2200577Ia 4500
001 0.3390-s22072787
008 220421s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22072787 
520 3 |a Miniaturization and wireless continuous glucose monitoring are key factors for the successful management of diabetes. Electrochemical sensors are very versatile and can be easily miniaturized for wireless glucose monitoring. The authors report a microneedle-based enzyme-free electrochemical wireless sensor for painless and continuous glucose monitoring. The microneedles (MNs) fabricated consist of a 3 × 5 sharp and stainless-steel electrode array configuration. Each MN in the 3 × 5 array has 575 µm × 150 µm in height and width, respectively. A glucose-catalyzing layer, porous platinum black, was electrochemically deposited on the tips of the MNs by applying a fixed cathodic current of 2.5 mA cm−2 for a period of 200 s. For the non-interference glucose sensing, the platinum (Pt)-black-coated MN was carefully packaged into a biocompatible ionomer, nafion. The surface morphologies of the bare and modified MNs were studied using field-emission scanning electron microscopy (FESEM) and energy-dispersive X-ray analysis (EDX). The wireless glucose sensor displayed a broad linear range of glucose (1→30 mM), a good sensitivity and higher detection limit of 145.33 µA mM−1 cm−2 and 480 µM, respectively, with bare AuMN as a counter electrode. However, the wireless device showed an improved sensitivity and enhanced detection limit of 445.75, 165.83 µA mM−1 cm−2 and 268 µM, respectively, with the Pt-black-modified MN as a counter electrode. The sensor also exhibited a very good response time (2 s) and a limited interference effect on the detection of glucose in the presence of other electroactive oxidizing species, indicating a very fast and interference-free chronoamperometric response. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Binary alloys 
650 0 4 |a Biocompatibility 
650 0 4 |a Chemical detection 
650 0 4 |a chronoamperometry 
650 0 4 |a Chronoamperometry 
650 0 4 |a continuous glucose monitoring 
650 0 4 |a Continuous glucose monitoring 
650 0 4 |a Controlled drug delivery 
650 0 4 |a Counter electrodes 
650 0 4 |a Cyclic voltammetry 
650 0 4 |a Data transfer 
650 0 4 |a Electrochemical electrodes 
650 0 4 |a Electrochemical sensors 
650 0 4 |a Electrochemicals 
650 0 4 |a Electrode arrays 
650 0 4 |a Energy dispersive X ray analysis 
650 0 4 |a Field emission microscopes 
650 0 4 |a Glucose 
650 0 4 |a glucose sensor 
650 0 4 |a Glucose sensors 
650 0 4 |a Gold alloys 
650 0 4 |a microneedle electrode array 
650 0 4 |a Microneedle electrode array 
650 0 4 |a Microneedles 
650 0 4 |a Miniaturisation 
650 0 4 |a Needles 
650 0 4 |a Non-enzymatic detection 
650 0 4 |a Platinum 
650 0 4 |a platinum black 
650 0 4 |a Platinum black 
650 0 4 |a Scanning electron microscopy 
650 0 4 |a wireless data transmission 
650 0 4 |a Wireless data transmission 
650 0 4 |a X ray diffraction analysis 
700 1 0 |a Chinnadayyala, S.R.  |e author 
700 1 0 |a Cho, S.  |e author 
700 1 0 |a Kim, Y.-J.  |e author 
700 1 0 |a Le, H.T.N.  |e author 
773 |t Sensors