Summary: | Effectively capturing and sensitively detecting cancer cells are critical to clinical diagnosis and cancer therapy. In this work, we prepared gold nanostar-decorated graphene oxide (GO-AuNSs) nanocomposites using a ultraviolet (UV)-induced strategy, and then modified them with a layer of bio-complex rBSA-FA (coupled reduced bovine serum albumin with folic acid) to generate GO-AuNSs@rBSA-FA nanocomposites. Herein, the application of GO and AuNSs not only strengthened the conductivity of the sensing platform but also guaranteed nanocomposites with biocompatible performance. Moreover, the adopted rBSA-FA layer could effectively enhance the stability and specificity towards gastric cancer cells (MGC-803). According to a systemic construc-tion procedure, a novel electrochemical cytosensor based on GO-AuNSs@rBSA-FA was fabricated for MGC-803 cell detection. With the assistance of cyclic voltammetry (CV) and differential pulse voltammetry (DPV), the cytosensor reached a detection limit of 100 cell/mL in a wide linear range of 3 × 102 ~7 × 106 cell/mL towards MGC-803 cells. The good electrochemical characteristics for the cancer cell analysis indicate a promising prospect of this electrochemical cytosensor in clinical cancer diagnosis. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
|