Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations

In this paper, four stabilized methods based on the lowest equal-order finite element pair for the steady micropolar Navier–Stokes equations (MNSE) are presented, which are penalty, regular, multiscale enrichment, and local Gauss integration methods. A priori properties, existence, uniqueness, stabi...

Full description

Bibliographic Details
Main Authors: Liu, D. (Author), Liu, J. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01302nam a2200217Ia 4500
001 0.3390-e24040454
008 220421s2022 CNT 000 0 und d
020 |a 10994300 (ISSN) 
245 1 0 |a Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/e24040454 
520 3 |a In this paper, four stabilized methods based on the lowest equal-order finite element pair for the steady micropolar Navier–Stokes equations (MNSE) are presented, which are penalty, regular, multiscale enrichment, and local Gauss integration methods. A priori properties, existence, uniqueness, stability, and error estimation based on Fem approximation of all the methods are proven for the physical variables. Finally, some numerical examples are displayed to show the numerical characteristics of these methods. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a local Gauss integration method 
650 0 4 |a micropolar Navier–Stokes equations 
650 0 4 |a multiscale enrichment method 
650 0 4 |a penalty method 
650 0 4 |a regular method 
650 0 4 |a stability and convergence 
700 1 0 |a Liu, D.  |e author 
700 1 0 |a Liu, J.  |e author 
773 |t Entropy