Inverse Kinematics Solution of 6-DOF Manipulator Based on Multi-Objective Full-Parameter Optimization PSO Algorithm

A multi-objective full-parameter optimization particle swarm optimization (MOFOPSO) algorithm is proposed in this paper to overcome the drawbacks of poor accuracy, low efficiency, and instability of the existing algorithms in the inverse kinematics(IK) solution of the manipulator. In designing the m...

Full description

Bibliographic Details
Main Authors: Chu, D. (Author), He, Y. (Author), Li, Q. (Author), Luo, S. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02986nam a2200529Ia 4500
001 0.3389-fnbot.2022.791796
008 220421s2022 CNT 000 0 und d
020 |a 16625218 (ISSN) 
245 1 0 |a Inverse Kinematics Solution of 6-DOF Manipulator Based on Multi-Objective Full-Parameter Optimization PSO Algorithm 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnbot.2022.791796 
520 3 |a A multi-objective full-parameter optimization particle swarm optimization (MOFOPSO) algorithm is proposed in this paper to overcome the drawbacks of poor accuracy, low efficiency, and instability of the existing algorithms in the inverse kinematics(IK) solution of the manipulator. In designing the multi-objective function, the proposed algorithm considers the factors such as position, posture, and joint. To improve PSO, the proposed algorithm comprehensively analyzes all factors affecting the global and local searching abilities. Based on this, the initial population is designed following the localized uniform distribution method. Meanwhile, the inertia weight, asynchronous learning factor, and time factor are respectively designed by introducing the iteration factor. Finally, this paper tests the performance of MOFOPSO with three typical functions to obtain a better inverse kinematics solution of the 6-DOF manipulator. Also, six other algorithms are taken for performance comparison. The experimental results indicate that the proposed method not only ensures the stability of the manipulator but also achieves high accuracy and efficiency in solving the inverse kinematics of the 6-DOF manipulator. Copyright © 2022 Luo, Chu, Li and He. 
650 0 4 |a article 
650 0 4 |a Asynchronoi learning factor 
650 0 4 |a Asynchronous learning 
650 0 4 |a asynchronous learning factor 
650 0 4 |a body position 
650 0 4 |a Efficiency 
650 0 4 |a Full parameters 
650 0 4 |a inertia weight 
650 0 4 |a Inertia weight 
650 0 4 |a Inverse kinematic solutions 
650 0 4 |a inverse kinematics 
650 0 4 |a Inverse kinematics 
650 0 4 |a Inverse problems 
650 0 4 |a Iterative methods 
650 0 4 |a kinematics 
650 0 4 |a learning 
650 0 4 |a Learning factor 
650 0 4 |a Manipulators 
650 0 4 |a Multi objective 
650 0 4 |a multi-objective full-parameter optimization particle swarm optimization 
650 0 4 |a Multi-objective full-parameter optimization particle swarm optimization 
650 0 4 |a Multiobjective optimization 
650 0 4 |a Parameter estimation 
650 0 4 |a Parameter optimization 
650 0 4 |a particle swarm optimization 
650 0 4 |a Particle swarm optimization (PSO) 
650 0 4 |a Swarm intelligence 
650 0 4 |a time factor 
650 0 4 |a time factor 
650 0 4 |a Time factors 
700 1 0 |a Chu, D.  |e author 
700 1 0 |a He, Y.  |e author 
700 1 0 |a Li, Q.  |e author 
700 1 0 |a Luo, S.  |e author 
773 |t Frontiers in Neurorobotics