Toward Quaternary QCA: Novel Majority and XOR Fuzzy Gates

As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic due to the simplicity of implementing fuzzy logic in a way much easier than CM...

Full description

Bibliographic Details
Main Authors: Akbari-Hasanjani, R. (Author), Haghparast, M. (Author), Sabbaghi-Nadooshan, R. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02864nam a2200613Ia 4500
001 0.1109-ACCESS.2022.3165200
008 220421s2022 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Toward Quaternary QCA: Novel Majority and XOR Fuzzy Gates 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2022.3165200 
520 3 |a As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic due to the simplicity of implementing fuzzy logic in a way much easier than CMOS technology. In this paper, a quaternary cell is proposed with two isolated layers because of requiring three particles to design this quaternary cell. Moreover, due to the instability of the basic gates, the three particles cannot be placed in one layer. The first layer of the proposed two-layer cell includes a ternary cell and the second one includes a binary cell. It is assumed that the overall polarization of the quaternary QCA (QQCA) cell is determined as the combined polarization of the two layers. The proposed QQCA cell can also be implemented in one layer. Simulations of the QQCA cell are performed based on analytical calculations. Moreover, a majority fuzzy gate, an XOR fuzzy gate, and a crossbar structure are simulated. Author 
650 0 4 |a Cells 
650 0 4 |a Circuit simulation 
650 0 4 |a CMOS integrated circuits 
650 0 4 |a CMOS technology 
650 0 4 |a CMOS technology 
650 0 4 |a Computer circuits 
650 0 4 |a Cytology 
650 0 4 |a Fuzzy logic 
650 0 4 |a Integrated circuit modeling 
650 0 4 |a Integrated circuit modeling 
650 0 4 |a Lithography 
650 0 4 |a Logic circuits 
650 0 4 |a Logic gates 
650 0 4 |a Logic gates 
650 0 4 |a majority fuzzy gate 
650 0 4 |a Majority fuzzy gate 
650 0 4 |a Many valued logics 
650 0 4 |a Multi-valued 
650 0 4 |a multi-valued QCA 
650 0 4 |a Multi-valued quantum-dot cellular automaton 
650 0 4 |a Nanocrystals 
650 0 4 |a polarization 
650 0 4 |a Polarization 
650 0 4 |a Potential well 
650 0 4 |a Potential wells 
650 0 4 |a QQCA 
650 0 4 |a Quantum computers 
650 0 4 |a Quantum computing 
650 0 4 |a Quantum Computing 
650 0 4 |a Quantum dots 
650 0 4 |a Quantum-dot cellular automata 
650 0 4 |a quaternary 
650 0 4 |a Quaternary 
650 0 4 |a Quaternary QCA 
650 0 4 |a Semiconductor quantum dots 
650 0 4 |a Timing circuits 
650 0 4 |a XOR fuzzy gate 
650 0 4 |a XOR fuzzy gate 
700 1 0 |a Akbari-Hasanjani, R.  |e author 
700 1 0 |a Haghparast, M.  |e author 
700 1 0 |a Sabbaghi-Nadooshan, R.  |e author 
773 |t IEEE Access