Spatiotemporal traffic data imputation via tensorial weighted Schatten-p norm minimization

Spatiotemporal traffic data exhibit multi-granular low-rank structure due to their periodicity among different timelines. Traditional low rank data completion methods fail to characterize such properties and produce unsatisfactory results for data imputation. In this paper, a tensorial weighted Scha...

Full description

Bibliographic Details
Main Authors: Hu, Y. (Author), Wang, S. (Author), Yin, B. (Author), Zhang, Y. (Author), Zhao, Y. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02346nam a2200325Ia 4500
001 0.1049-itr2.12186
008 220421s2022 CNT 000 0 und d
020 |a 1751956X (ISSN) 
245 1 0 |a Spatiotemporal traffic data imputation via tensorial weighted Schatten-p norm minimization 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1049/itr2.12186 
520 3 |a Spatiotemporal traffic data exhibit multi-granular low-rank structure due to their periodicity among different timelines. Traditional low rank data completion methods fail to characterize such properties and produce unsatisfactory results for data imputation. In this paper, a tensorial weighted Schatten-p norm minimization (TWSN) is proposed for spatiotemporal traffic data imputation. TWSN consists of an approximation term and a low-rank regularization term over the recovered tensor data, where the latter is a combination of the weighted Schatten-p norm in the matrix form of each mode of the tensor. For each mode, TWSN utilizes a selection scheme of the mode-wise weights to capture different properties of singular values of each mode of the tensor. Overall, TWSN not only plays a balancing role between the rank function and the nuclear norm, but also captures the anisotropic correlation of singular values of each mode of the tensor. TWSN is evaluated on four real-world datasets with different ping frequencies (2, 5, 10 min) and its performance is compared with several state-of-the-art methods. The experimental results show that TWSN outperforms other methods under various data missing scenarios. © 2022 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 
650 0 4 |a Completion methods 
650 0 4 |a Data imputation 
650 0 4 |a Intelligent systems 
650 0 4 |a Matrix forms 
650 0 4 |a P-norm minimization 
650 0 4 |a Property 
650 0 4 |a Rank structure 
650 0 4 |a Regularization terms 
650 0 4 |a Selection scheme 
650 0 4 |a Singular values 
650 0 4 |a Tensors 
650 0 4 |a Traffic data 
700 1 0 |a Hu, Y.  |e author 
700 1 0 |a Wang, S.  |e author 
700 1 0 |a Yin, B.  |e author 
700 1 0 |a Zhang, Y.  |e author 
700 1 0 |a Zhao, Y.  |e author 
773 |t IET Intelligent Transport Systems