Growth of α-Sn on silicon by a reversed β-Sn to α-Sn phase transformation for quantum material integration

α-Sn and SnGe alloys are attracting attention as a new family of topological quantum materials. However, bulk α-Sn is thermodynamically stable only below 13∘C. Moreover, scalable integration of α-Sn quantum materials and devices on silicon is hindered by their large lattice mismatch. Here, we grow c...

Full description

Bibliographic Details
Main Authors: Akey, A. (Author), Covian, A.C (Author), Gardener, J.A (Author), Levin, B.D.A (Author), Liu, J. (Author), Liu, S. (Author), Wang, X. (Author)
Format: Article
Language:English
Published: Springer Nature 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02341nam a2200433Ia 4500
001 0.1038-s43246-022-00241-7
008 220421s2022 CNT 000 0 und d
020 |a 26624443 (ISSN) 
245 1 0 |a Growth of α-Sn on silicon by a reversed β-Sn to α-Sn phase transformation for quantum material integration 
260 0 |b Springer Nature  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s43246-022-00241-7 
520 3 |a α-Sn and SnGe alloys are attracting attention as a new family of topological quantum materials. However, bulk α-Sn is thermodynamically stable only below 13∘C. Moreover, scalable integration of α-Sn quantum materials and devices on silicon is hindered by their large lattice mismatch. Here, we grow compressively strained α-Sn doped with 2-4 at.% germanium on a native oxide layer on a silicon substrate at 300–500∘C. Growth is found to occur by a reversed β-Sn to α-Sn phase transformation without relying on epitaxy, with germanium-rich GeSn nanoclusters in the as-deposited material acting as seeds. The size of α-Sn microdots reaches up to 200 nm, which is approximately ten times larger than the upper size limit for α-Sn formation reported previously. Furthermore, the compressive strain makes it a candidate 3D topological Dirac semimetal with possible applications in spintronics. This process can be further optimized to achieve optically tunable SnGe quantum material and device integration on silicon. © 2022, The Author(s). 
650 0 4 |a Deposited materials 
650 0 4 |a Germanium 
650 0 4 |a Germaniums (Ge) 
650 0 4 |a Integration 
650 0 4 |a Large lattice mismatch 
650 0 4 |a Lattice mismatch 
650 0 4 |a Native oxides 
650 0 4 |a Oxide layer 
650 0 4 |a Phase transitions 
650 0 4 |a Phases transformation 
650 0 4 |a Semiconductor alloys 
650 0 4 |a Si-Ge alloys 
650 0 4 |a Silicon 
650 0 4 |a Silicon substrates 
650 0 4 |a Sn-doped 
650 0 4 |a Thermodynamically stable 
650 0 4 |a Tin alloys 
650 0 4 |a Topology 
650 0 4 |a β-Sn 
700 1 0 |a Akey, A.  |e author 
700 1 0 |a Covian, A.C.  |e author 
700 1 0 |a Gardener, J.A.  |e author 
700 1 0 |a Levin, B.D.A.  |e author 
700 1 0 |a Liu, J.  |e author 
700 1 0 |a Liu, S.  |e author 
700 1 0 |a Wang, X.  |e author 
773 |t Communications Materials