Parametric optimization of a cesaro fins employed latent heat storage system for melting performance enhancement

The large-scale use of sustainable energy necessitates the use of latent heat storage (LHS). This study aims to increase the melting performance of an LHS system by designing and optimizing the cesaro fins. To examine the melting behaviours of PCM (i.e., RT-82) in a finned LHS system, a 2-D melting...

Full description

Bibliographic Details
Main Authors: Dhar, A. (Author), Powar, S. (Author), Saini, P. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
PCM
Online Access:View Fulltext in Publisher
LEADER 04112nam a2200541Ia 4500
001 0.1016-j.est.2022.104534
008 220421s2022 CNT 000 0 und d
020 |a 2352152X (ISSN) 
245 1 0 |a Parametric optimization of a cesaro fins employed latent heat storage system for melting performance enhancement 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.est.2022.104534 
520 3 |a The large-scale use of sustainable energy necessitates the use of latent heat storage (LHS). This study aims to increase the melting performance of an LHS system by designing and optimizing the cesaro fins. To examine the melting behaviours of PCM (i.e., RT-82) in a finned LHS system, a 2-D melting heat transfer model is developed and numerically solved. As per literature, there is very literature including the NC (Natural Convection) and represents the coordination in fins, nanoparticles and metal foam. So, the impacts of natural convection, fin arrangement, nanoparticles and metal foam are explored for the Fourier number variations from 0.014 to 0.158 at a constant Stefan number of 0.20. The dynamic temperature distribution, as well as the natural convection and fin arrangement, are investigated to determine how phase change material melts over time by considering the non-thermal equilibrium between metal foam and PCM/nanoPCM. The findings illustrate that natural convection has a significant effect on melting behaviours in the LHTES (Latent Heat Thermal Energy Storage) system, with a 26.8% increase in melting/charging rate as compared to the situation without NC. The LHTES system with improved fin structure (i.e., Type-3) and increased number of fins (i.e., Type-5) configurations have more uniform temperature distribution and a higher melting rate by increasing the heat transfer cooperation between NC and thermal conduction. Low thermal conductivity causes poor performance in PCM (Phase Change Material) energy storage devices. The melting/charging of PCM in an LHTES system is greatly improved in this study by employing a porous metal foam (i.e., copper metal foam) or nanoparticle (i.e., Cu, CuO and Al2O3). The impact of nanoparticle volume fraction and metal foam porosity on the LHTES system's melting/charging performance is also investigated using the enthalpy-porosity technique. According to the results, PCM's melting/charging time is lowered by 63.4% when nanoparticles are mixed in and incorporated with metal foam for the Fourier number varies from 0.014 to 0.158 at a constant Stefan number of 0.20. PCM melting/charging time decreased when the metal foam porosity decreased or increased in the volume fraction of nanoparticles. High porosity metal foams with low volume fractions of nanoparticles can increase melting performance since it assures minimum PCM volume and increases natural convection. © 2022 The Authors 
650 0 4 |a Alumina 
650 0 4 |a Aluminum oxide 
650 0 4 |a Charging performance 
650 0 4 |a Copper oxides 
650 0 4 |a Fins 
650 0 4 |a Fins (heat exchange) 
650 0 4 |a Fourier numbers 
650 0 4 |a Heat storage 
650 0 4 |a Latent heat 
650 0 4 |a Latent heat storage system 
650 0 4 |a Latent heat thermal energy storage systems 
650 0 4 |a LHTES system 
650 0 4 |a Melting behavior 
650 0 4 |a Melting performance 
650 0 4 |a Melting performance/charging performance 
650 0 4 |a Melting performance/charging performance 
650 0 4 |a Metal foam 
650 0 4 |a Metal foams 
650 0 4 |a Metal foams 
650 0 4 |a Metal nanoparticles 
650 0 4 |a Metals 
650 0 4 |a Nano PCM 
650 0 4 |a Nano phase change material 
650 0 4 |a Nano-phase change 
650 0 4 |a Natural convection 
650 0 4 |a PCM 
650 0 4 |a Phase change materials 
650 0 4 |a Porosity 
650 0 4 |a Storage (materials) 
650 0 4 |a Temperature distribution 
650 0 4 |a Thermal conductivity 
650 0 4 |a Volume fraction 
700 1 0 |a Dhar, A.  |e author 
700 1 0 |a Powar, S.  |e author 
700 1 0 |a Saini, P.  |e author 
773 |t Journal of Energy Storage