Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect

Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and...

Full description

Bibliographic Details
Main Authors: Deng, X. (Author), Wang, Y. (Author), Xu, Y. (Author), Yan, C. (Author)
Format: Article
Language:English
Published: Springer Science and Business Media B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03037nam a2200517Ia 4500
001 0.1007-s40820-022-00836-2
008 220421s2022 CNT 000 0 und d
020 |a 23116706 (ISSN) 
245 1 0 |a Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect 
260 0 |b Springer Science and Business Media B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s40820-022-00836-2 
520 3 |a Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed. The electrochemical windows of the chloride hydrogel electrolytes are enlarged by > 1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds, which highly facilitates the operation of electrolytes at ultralow temperatures, as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry. Based on the Hofmeister effect, the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl2 and 6 M LiCl can be strongly interrupted, thus exhibiting a sufficient ionic conductivity of 1.14 mS cm−1 and a low activation energy of 0.21 eV at −50 °C. This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g−1 at −50 °C, while the capacity retention remains ~ 100% after 2000 cycles. These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries. [Figure not available: see fulltext.] © 2022, The Author(s). 
650 0 4 |a Activation energy 
650 0 4 |a Aqueous zinc ion battery 
650 0 4 |a Aqueous zinc ion battery 
650 0 4 |a Chloride hydrogel 
650 0 4 |a Chloride hydrogel 
650 0 4 |a Chlorine compounds 
650 0 4 |a Cooperative effect 
650 0 4 |a Co-operative effects 
650 0 4 |a Costs 
650 0 4 |a Electric batteries 
650 0 4 |a Electric discharges 
650 0 4 |a Electrochemical window 
650 0 4 |a Electrochemical window 
650 0 4 |a Electrolytes 
650 0 4 |a Freezing 
650 0 4 |a Hofmeister effects 
650 0 4 |a Hydrogel electrolytes 
650 0 4 |a Hydrogels 
650 0 4 |a Hydrogen bonds 
650 0 4 |a Hydrogen-bond 
650 0 4 |a Ion batteries 
650 0 4 |a Ions 
650 0 4 |a Lithium compounds 
650 0 4 |a Low-costs 
650 0 4 |a Temperature 
650 0 4 |a Ultra low temperatures 
650 0 4 |a Ultralow temperature 
650 0 4 |a Zinc chloride 
650 0 4 |a Zinc ions 
700 1 0 |a Deng, X.  |e author 
700 1 0 |a Wang, Y.  |e author 
700 1 0 |a Xu, Y.  |e author 
700 1 0 |a Yan, C.  |e author 
773 |t Nano-Micro Letters