Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays

This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that ch...

Full description

Bibliographic Details
Main Authors: Abiri, E. (Author), Mortazavifar, S.L (Author), Salehi, M.R (Author), Shahraki, M. (Author)
Format: Article
Language:English
Published: Higher Education Press Limited Company 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02470nam a2200421Ia 4500
001 0.1007-s12200-022-00010-x
008 220421s2022 CNT 000 0 und d
020 |a 20952759 (ISSN) 
245 1 0 |a Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays 
260 0 |b Higher Education Press Limited Company  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s12200-022-00010-x 
520 3 |a This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that changing the cross-section of NW from circular (or rectangular) to a stadium shape leads to change in the position and the number of absorption modes of the NW. In a special case, these modes result in the maximum absorption inside NWs. Another method used in this paper to attain broadband absorption is utilization of multiple NWs which have different geometries. However, the maximum enhancement is achieved using non-close packed NW. These structures can support more cavity modes, while NW scattering leads to broadening of the absorption spectra. All the structures are optimized using particle swarm optimizations. Using these optimized structures, it is viable to enhance the absorption by solar cells without introducing more absorbent materials. Graphical Abstract: [Figure not available: see fulltext.] © 2022, The Author(s). 
650 0 4 |a Absorption 
650 0 4 |a Absorption property 
650 0 4 |a Absorption rates 
650 0 4 |a Broadband absorption 
650 0 4 |a Complexes structure 
650 0 4 |a Diffraction 
650 0 4 |a Light trapping 
650 0 4 |a Light-trapping 
650 0 4 |a Nanowires 
650 0 4 |a Optical resonators 
650 0 4 |a Particle swarm optimization (PSO) 
650 0 4 |a Silicon 
650 0 4 |a Silicon nanowire arrays 
650 0 4 |a Simple geometries 
650 0 4 |a Solar absorbers 
650 0 4 |a Solar cells 
650 0 4 |a Stadium silicon nanowire 
650 0 4 |a Stadium silicon nanowire (NW) 
650 0 4 |a Ultra-thin 
650 0 4 |a Ultra-thin solar cell 
650 0 4 |a Ultra-thin solar cells (SCs) 
700 1 0 |a Abiri, E.  |e author 
700 1 0 |a Mortazavifar, S.L.  |e author 
700 1 0 |a Salehi, M.R.  |e author 
700 1 0 |a Shahraki, M.  |e author 
773 |t Frontiers of Optoelectronics