The geometry of Bloch space in the context of quantum random access codes

We study the communication protocol known as a quantum random access code (QRAC) which encodes n classical bits into m qubits (m< n) with a probability of recovering any of the initial n bits of at least p>12. Such a code is denoted by (n, m, p)-QRAC. If cooperation is allowed through a shared...

Full description

Bibliographic Details
Main Authors: Mančinska, L. (Author), Storgaard, S.A.L (Author)
Format: Article
Language:English
Published: Springer 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02203nam a2200361Ia 4500
001 0.1007-s11128-022-03470-4
008 220421s2022 CNT 000 0 und d
020 |a 15700755 (ISSN) 
245 1 0 |a The geometry of Bloch space in the context of quantum random access codes 
260 0 |b Springer  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s11128-022-03470-4 
520 3 |a We study the communication protocol known as a quantum random access code (QRAC) which encodes n classical bits into m qubits (m< n) with a probability of recovering any of the initial n bits of at least p>12. Such a code is denoted by (n, m, p)-QRAC. If cooperation is allowed through a shared random string, we call it a QRAC with shared randomness. We prove that for any (n, m, p)-QRAC with shared randomness the parameter p is upper bounded by 12+122m-1n. For m= 2 , this gives a new bound of p≤12+12n confirming a conjecture by Imamichi and Raymond (AQIS’18). Our bound implies that the previously known analytical constructions of (3,2,12+16)- , (4,2,12+122)- and (6,2,12+123)-QRACs are optimal. To obtain our bound, we investigate the geometry of quantum states in the Bloch vector representation and make use of a geometric interpretation of the fact that any two quantum states have a nonnegative overlap. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. 
650 0 4 |a Bloch space 
650 0 4 |a Bloch vector representation 
650 0 4 |a Bloch vector representation 
650 0 4 |a Bloch vectors 
650 0 4 |a Geometry 
650 0 4 |a Geometry of bloch space 
650 0 4 |a Geometry of Bloch space 
650 0 4 |a Optimality 
650 0 4 |a Optimality of success probability 
650 0 4 |a Optimality of success probability 
650 0 4 |a Quantum optics 
650 0 4 |a Quantum random access code 
650 0 4 |a Quantum random access codes 
650 0 4 |a Quantum state 
650 0 4 |a Random access codes 
650 0 4 |a Random processes 
650 0 4 |a Vector representations 
650 0 4 |a Vector spaces 
700 1 0 |a Mančinska, L.  |e author 
700 1 0 |a Storgaard, S.A.L.  |e author 
773 |t Quantum Information Processing