Ionic Conductivity versus Particle Size of Ball-Milled Sulfide-Based Solid Electrolytes: Strategy Towards Optimized Composite Cathode Performance in All-Solid-State Batteries

For the fabrication of high-energy and high-power all-solid-state batteries (ASSBs), easily synthesizable solid electrolytes are needed, which enable fast ion transport inside the composite cathode as well as good contacts between cathode active material and solid electrolyte particles. Regarding th...

Full description

Bibliographic Details
Main Authors: Cronau, M. (Author), Duchardt, M. (Author), Roling, B. (Author), Szabo, M. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02647nam a2200481Ia 4500
001 0.1002-batt.202200041
008 220421s2022 CNT 000 0 und d
020 |a 25666223 (ISSN) 
245 1 0 |a Ionic Conductivity versus Particle Size of Ball-Milled Sulfide-Based Solid Electrolytes: Strategy Towards Optimized Composite Cathode Performance in All-Solid-State Batteries 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/batt.202200041 
520 3 |a For the fabrication of high-energy and high-power all-solid-state batteries (ASSBs), easily synthesizable solid electrolytes are needed, which enable fast ion transport inside the composite cathode as well as good contacts between cathode active material and solid electrolyte particles. Regarding the latter, the size ratio of the particles inside the composite cathode has to be optimized. Here, we use a wet ball milling process for the synthesis of agyrodite-type Li5.5PS4.5Cl1.5 solid electrolyte particles and study the influence of milling time on particle size and ionic conductivity. With longer milling time, both the solid electrolyte particle size and the ionic conductivity decrease, which exert an opposing influence on the cathode performance. We show that a milling time of approximately 2 h leads to an optimum cathode performance, as this time is sufficient for a favorable particle size ratio, while a strong drop of the ionic conductivity of Li5.5PS4.5Cl1.5 is avoided. © 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH. 
650 0 4 |a all-solid-state battery 
650 0 4 |a All-solid-state battery 
650 0 4 |a ball milling 
650 0 4 |a Ball milling 
650 0 4 |a Ball-milled 
650 0 4 |a capacity optimization 
650 0 4 |a Capacity optimization 
650 0 4 |a Cathode performance 
650 0 4 |a Cathodes 
650 0 4 |a Chlorine compounds 
650 0 4 |a composite cathode 
650 0 4 |a Composite cathode 
650 0 4 |a Glass ceramics 
650 0 4 |a glass-ceramic solid electrolyte 
650 0 4 |a Glass-ceramic solid electrolyte 
650 0 4 |a Glass-ceramics 
650 0 4 |a Lithium compounds 
650 0 4 |a Milling (machining) 
650 0 4 |a Milling time 
650 0 4 |a Particles sizes 
650 0 4 |a Phosphorus compounds 
650 0 4 |a Solid electrolytes 
650 0 4 |a Solid state devices 
650 0 4 |a Solid-State Batteries 
650 0 4 |a Sulfide-based solid electrolytes 
650 0 4 |a Sulfur compounds 
700 1 0 |a Cronau, M.  |e author 
700 1 0 |a Duchardt, M.  |e author 
700 1 0 |a Roling, B.  |e author 
700 1 0 |a Szabo, M.  |e author 
773 |t Batteries and Supercaps