Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries

Sodium-metal chloride batteries are considered a sustainable and safe alternative to lithium-ion batteries for large-scale stationary electricity storage, but exhibit disadvantages in rate capability. Several studies identify metal-ion migration through the metal chloride conversion layer on the pos...

Full description

Bibliographic Details
Main Authors: Battaglia, C. (Author), Heinz, M.V.F (Author), Landmann, D. (Author), Schmutz, P. (Author), Svaluto-Ferro, E. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02956nam a2200469Ia 4500
001 0.1002-advs.202201019
008 220421s2022 CNT 000 0 und d
020 |a 21983844 (ISSN) 
245 1 0 |a Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/advs.202201019 
520 3 |a Sodium-metal chloride batteries are considered a sustainable and safe alternative to lithium-ion batteries for large-scale stationary electricity storage, but exhibit disadvantages in rate capability. Several studies identify metal-ion migration through the metal chloride conversion layer on the positive electrode as the rate-limiting step, limiting charge and discharge rates in sodium-metal chloride batteries. Here the authors present electrochemical nickel and iron chlorination with planar model electrodes in molten sodium tetrachloroaluminate electrolyte at 300 °C. It is discovered that, instead of metal-ion migration through the metal chloride conversion layer, it is metal-ion diffusion in sodium tetrachloroaluminate which limits chlorination of both the nickel and iron electrodes. Upon charge, chlorination of the nickel electrode proceeds via uniform oxidation of nickel and the formation of NiCl2 platelets on the surface of the electrode. In contrast, the oxidation of the iron electrodes proceeds via localized corrosion attacks, resulting in nonuniform iron oxidation and pulverization of the iron electrode. The transition from planar model electrodes to porous high-capacity electrodes, where sodium-ion migration along the tortuous path in the porous electrode can become rate limiting, is further discussed. These mechanistic insights are important for the design of competitive next-generation sodium-metal chloride batteries with improved rate performance. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 
650 0 4 |a Chlorination 
650 0 4 |a Chlorine compounds 
650 0 4 |a Conversion layers 
650 0 4 |a Electric discharges 
650 0 4 |a Electrochemical electrodes 
650 0 4 |a Electrolytes 
650 0 4 |a Ion migration 
650 0 4 |a Iron 
650 0 4 |a Iron electrodes 
650 0 4 |a Lithium-ion batteries 
650 0 4 |a Metal chlorides 
650 0 4 |a Metal ions 
650 0 4 |a Metals ions 
650 0 4 |a Model electrodes 
650 0 4 |a Molten salt 
650 0 4 |a molten salt batteries 
650 0 4 |a Molten salt battery 
650 0 4 |a Nickel compounds 
650 0 4 |a Oxidation 
650 0 4 |a Planar model 
650 0 4 |a Sodium compounds 
650 0 4 |a sodium-nickel chloride batteries 
650 0 4 |a ZEBRA batteries 
650 0 4 |a ZEBRA battery 
700 1 0 |a Battaglia, C.  |e author 
700 1 0 |a Heinz, M.V.F.  |e author 
700 1 0 |a Landmann, D.  |e author 
700 1 0 |a Schmutz, P.  |e author 
700 1 0 |a Svaluto-Ferro, E.  |e author 
773 |t Advanced Science