Verbesserungen beim Laserschneiden mit Methoden des maschinellen Lernens

Although laser cutting of metals is a well-established process, there is considerable potential for improvement with regard to various requirements for the manufacturing industry. First, this potential is identified and then it is shown how improvements could be made using machine learning. For this...

Full description

Bibliographic Details
Main Author: Felica Tatzel, Leonie (auth)
Format: eBook
Published: Karlsruhe KIT Scientific Publishing 2022
Subjects:
Online Access:Get fulltext
LEADER 01506naaaa2200349uu 4500
001 52956
005 20220218
020 |a KSP/1000137690 
020 |a 9783731511281 
024 7 |a 10.5445/KSP/1000137690  |c doi 
041 0 |h German 
042 |a dc 
100 1 |a Felica Tatzel, Leonie  |e auth 
245 1 0 |a Verbesserungen beim Laserschneiden mit Methoden des maschinellen Lernens 
260 |a Karlsruhe  |b KIT Scientific Publishing  |c 2022 
300 |a 1 electronic resource (234 p.) 
856 |z Get fulltext  |u https://library.oapen.org/handle/20.500.12657/52956 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Although laser cutting of metals is a well-established process, there is considerable potential for improvement with regard to various requirements for the manufacturing industry. First, this potential is identified and then it is shown how improvements could be made using machine learning. For this purpose, a database was generated. It contains the process parameters, RGB images, 3D point clouds and various quality features of almost 4000 cut edges. 
540 |a Creative Commons 
546 |a German 
650 7 |a Electrical engineering  |2 bicssc 
653 |a cut quality 
653 |a convolutional neural network 
653 |a machine learning 
653 |a stainless steel 
653 |a Laser cutting 
653 |a Schnittqualität 
653 |a Maschinelles Lernen 
653 |a Edelstahl 
653 |a Laserschneiden 
653 |a Faltendes neuronales Netz