Ansätze zur lokalen Bayes'schen Fusion von Informationsbeiträgen heterogener Quellen

The solution of various tasks benefits from information fusion or even requires it. The Bayesian fusion methodology is clear, well-founded and fulfills the essential requirements for a meaningful methodology also for fusing the contributions of heterogeneous information sources. In many practically...

Full description

Bibliographic Details
Main Author: Sander, Jennifer (auth)
Format: eBook
Published: Karlsruhe KIT Scientific Publishing 2021
Subjects:
Online Access:Get fulltext
LEADER 01595naaaa2200349uu 4500
001 48837
005 20210527
020 |a KSP/1000125447 
020 |a 9783731510628 
024 7 |a 10.5445/KSP/1000125447  |c doi 
041 0 |h German 
042 |a dc 
100 1 |a Sander, Jennifer  |e auth 
245 1 0 |a Ansätze zur lokalen Bayes'schen Fusion von Informationsbeiträgen heterogener Quellen 
260 |a Karlsruhe  |b KIT Scientific Publishing  |c 2021 
300 |a 1 electronic resource (342 p.) 
856 |z Get fulltext  |u https://library.oapen.org/handle/20.500.12657/48837 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The solution of various tasks benefits from information fusion or even requires it. The Bayesian fusion methodology is clear, well-founded and fulfills the essential requirements for a meaningful methodology also for fusing the contributions of heterogeneous information sources. In many practically relevant tasks, Bayesian methods cause high, often unacceptable effort. In the work, novel approaches to cope with Bayesian fusion in such situations are formulated and investigated. 
540 |a Creative Commons 
546 |a German 
650 7 |a Maths for computer scientists  |2 bicssc 
653 |a Informationsfusion 
653 |a heterogene Informationsquellen 
653 |a Bayes'sche Theorie 
653 |a Prinzip der Maximalen Entropie 
653 |a Unsicherheit 
653 |a information fusion 
653 |a heterogeneous information sources 
653 |a Bayesian theory 
653 |a Maximum Entropy principle 
653 |a uncertainty