Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra...

Full description

Bibliographic Details
Other Authors: Sather-Wagstaff, Sean M. (Editor), Francisco, Christopher (Editor), Klingler, Lee (Editor), Vassilev, Janet C. (Editor)
Format: eBook
Published: De Gruyter 20120426
Subjects:
Online Access:Get fulltext
LEADER 01900naaaa2200301uu 4500
001 25206
005 20190425
020 |a 9783110278606 
041 0 |h English 
042 |a dc 
100 1 |a Sather-Wagstaff, Sean M.  |e edt 
856 |z Get fulltext  |u http://library.oapen.org/handle/20.500.12657/25206 
700 1 |a Francisco, Christopher  |e edt 
700 1 |a Klingler, Lee  |e edt 
700 1 |a Vassilev, Janet C.  |e edt 
700 1 |a Sather-Wagstaff, Sean M.  |e oth 
700 1 |a Francisco, Christopher  |e oth 
700 1 |a Klingler, Lee  |e oth 
700 1 |a Vassilev, Janet C.  |e oth 
245 1 0 |a Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization 
260 |b De Gruyter  |c 20120426 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and more. 
536 |a Knowledge Unlatched 
540 |a Creative Commons 
546 |a English 
653 |a Mathematics 
653 |a Mathematics