Motivational Profiles in TIMSS Mathematics : Exploring Student Clusters Across Countries and Time

This open access book presents a person-centered exploration of student profiles, using variables related to motivation to do school mathematics derived from the IEA's Trends in International Mathematics and Science Study (TIMSS) data. Statistical cluster analysis is used to identify groups of...

Full description

Bibliographic Details
Main Author: Michaelides, Michalis P. (auth)
Other Authors: Brown, Gavin T. L. (auth), Eklöf, Hanna (auth), Papanastasiou, Elena C. (auth)
Format: eBook
Published: Cham Springer Nature 2019
Subjects:
Online Access:Get fulltext
LEADER 02781naaaa2200373uu 4500
001 22955
005 20200318
020 |a 978-3-030-26183-2 
024 7 |a 10.1007/978-3-030-26183-2  |c doi 
041 0 |h English 
042 |a dc 
100 1 |a Michaelides, Michalis P.  |e auth 
856 |z Get fulltext  |u http://library.oapen.org/handle/20.500.12657/22955 
700 1 |a Brown, Gavin T. L.  |e auth 
700 1 |a Eklöf, Hanna  |e auth 
700 1 |a Papanastasiou, Elena C.  |e auth 
245 1 0 |a Motivational Profiles in TIMSS Mathematics : Exploring Student Clusters Across Countries and Time 
260 |a Cham  |b Springer Nature  |c 2019 
300 |a 1 electronic resource (144 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book presents a person-centered exploration of student profiles, using variables related to motivation to do school mathematics derived from the IEA's Trends in International Mathematics and Science Study (TIMSS) data. Statistical cluster analysis is used to identify groups of students with similar motivational profiles, across grades and over time, for multiple participating countries. While motivational variables systematically relate to school outcomes, linear relationships can obscure the diverse makeup of student subgroups, each with varying combinations of motivation, emotions, and attitudes. In this book, a person-centered analysis of distinct and meaningful motivational profiles and their differences on sociodemographic variables and mathematics performance broadens understanding about the role that motivation characteristics play in learning and achievement in mathematics. Exploiting the richness of IEA's TIMSS data from many countries, extracted clusters reveal consistent, as well as certain nuanced patterns that are systematically linked to sociodemographic and achievement measures. Student clusters with inconsistent motivational profiles were found in all countries; mathematics self-confidence then emerged as the variable more closely associated with average achievement. The findings demonstrate that teachers, researchers, and policymakers need to take into account differential student profiles, prioritizing techniques that target skill and competence in mathematics, in educational efforts to develop student motivation. 
540 |a All rights reserved 
546 |a English 
650 7 |a Social research & statistics  |2 bicssc 
650 7 |a Education  |2 bicssc 
650 7 |a Educational psychology  |2 bicssc 
650 7 |a Examinations & assessment  |2 bicssc 
653 |a Education 
653 |a Assessment 
653 |a Educational psychology 
653 |a Education-Psychology 
653 |a Statistics  
653 |a International education  
653 |a Comparative education