Robust Complex Event Pattern Detection over Streams

Event stream processing (ESP) has become increasingly important in modern applications. In this dissertation, I focus on providing a robust ESP solution by meeting three major research challenges regarding the robustness of ESP systems: (1) while event constraint of the input stream is available, ap...

Full description

Bibliographic Details
Main Author: Li, Ming
Other Authors: Murali Mani, Advisor
Format: Others
Published: Digital WPI 2010
Subjects:
CEP
Online Access:https://digitalcommons.wpi.edu/etd-dissertations/90
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=1089&context=etd-dissertations
Description
Summary:Event stream processing (ESP) has become increasingly important in modern applications. In this dissertation, I focus on providing a robust ESP solution by meeting three major research challenges regarding the robustness of ESP systems: (1) while event constraint of the input stream is available, applying such semantic information in the event processing; (2) handling event streams with out-of-order data arrival and (3) handling event streams with interval-based temporal semantics. The following are the three corresponding research tasks completed by the dissertation: Task I - Constraint-Aware Complex Event Pattern Detection over Streams. In this task, a framework for constraint-aware pattern detection over event streams is designed, which on the fly checks the query satisfiability / unsatisfiability using a lightweight reasoning mechanism and adjusts the processing strategy dynamically by producing early feedback, releasing unnecessary system resources and terminating corresponding pattern monitor. Task II - Complex Event Pattern Detection over Streams with Out-of-Order Data Arrival. In this task, a mechanism to address the problem of processing event queries specified over streams that may contain out-of-order data is studied, which provides new physical implementation strategies for the core stream algebra operators such as sequence scan, pattern construction and negation filtering. Task III - Complex Event Pattern Detection over Streams with Interval-Based Temporal Semantics. In this task, an expressive language to represent the required temporal patterns among streaming interval events is introduced and the corresponding temporal operator ISEQ is designed.