Compton Scattering Polarimetry for The Determination of the Proton’S Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(E,e')P
The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. as of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
W&M ScholarWorks
2016
|
Subjects: | |
Online Access: | https://scholarworks.wm.edu/etd/1477068542 https://scholarworks.wm.edu/cgi/viewcontent.cgi?article=1106&context=etd |
Summary: | The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. as of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Qweak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Qpw). Any signs of “new physics” will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1 %. at this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Qweak . |
---|