Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization
The immobilization of surface-modified polyamidoamine (PAMAM) dendrimers on the cell surface introduces a novel approach for efficient and specific cellular uptake of therapeutic-carrying nanoparticles. This cell surface-nanoparticle hybridization event takes place via bioorthogonal copper-free clic...
Main Author: | |
---|---|
Format: | Others |
Published: |
VCU Scholars Compass
2017
|
Subjects: | |
Online Access: | http://scholarscompass.vcu.edu/etd/5002 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=6085&context=etd |
id |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-6085 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-60852017-08-09T05:14:00Z Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization Cooper, Remy C The immobilization of surface-modified polyamidoamine (PAMAM) dendrimers on the cell surface introduces a novel approach for efficient and specific cellular uptake of therapeutic-carrying nanoparticles. This cell surface-nanoparticle hybridization event takes place via bioorthogonal copper-free click chemistry between a dibenzocyclooctyne (DBCO) group on the dendrimer surface and azide-capped glycans expressed on the cell membrane through metabolic incorporation of azido sugars. This particular cell-nanoparticle hybridization method can be exploited to deliver a variety of therapeutic, genetic or fluorescent payloads directly into cells. Here, this method was employed to deliver plasmid DNA, siRNA and the hydrophobic anticancer drug Camptothecin (CPT) to enhance transfection and therapeutic efficacy. Native, acetylated, and PEGylated generation 4 (G4) PAMAM dendrimers were conjugated with DBCO. When introduced to azide expressing NIH3T3 fibroblasts and HN12 cancer cells, successful surface hybridization was achieved. The physiochemical properties of PAMAM dendrimers allowed for successful hydrophobic drug encapsulation and electrostatic nucleic acid condensation. 2017-01-01T08:00:00Z text application/pdf http://scholarscompass.vcu.edu/etd/5002 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=6085&context=etd © The Author Theses and Dissertations VCU Scholars Compass Dendrimer Drug Delivery Gene Delivery Click Chemistry |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Dendrimer Drug Delivery Gene Delivery Click Chemistry |
spellingShingle |
Dendrimer Drug Delivery Gene Delivery Click Chemistry Cooper, Remy C Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
description |
The immobilization of surface-modified polyamidoamine (PAMAM) dendrimers on the cell surface introduces a novel approach for efficient and specific cellular uptake of therapeutic-carrying nanoparticles. This cell surface-nanoparticle hybridization event takes place via bioorthogonal copper-free click chemistry between a dibenzocyclooctyne (DBCO) group on the dendrimer surface and azide-capped glycans expressed on the cell membrane through metabolic incorporation of azido sugars. This particular cell-nanoparticle hybridization method can be exploited to deliver a variety of therapeutic, genetic or fluorescent payloads directly into cells. Here, this method was employed to deliver plasmid DNA, siRNA and the hydrophobic anticancer drug Camptothecin (CPT) to enhance transfection and therapeutic efficacy. Native, acetylated, and PEGylated generation 4 (G4) PAMAM dendrimers were conjugated with DBCO. When introduced to azide expressing NIH3T3 fibroblasts and HN12 cancer cells, successful surface hybridization was achieved. The physiochemical properties of PAMAM dendrimers allowed for successful hydrophobic drug encapsulation and electrostatic nucleic acid condensation. |
author |
Cooper, Remy C |
author_facet |
Cooper, Remy C |
author_sort |
Cooper, Remy C |
title |
Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
title_short |
Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
title_full |
Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
title_fullStr |
Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
title_full_unstemmed |
Novel Therapeutic Delivery via Cell-Nanoparticle Hybridization |
title_sort |
novel therapeutic delivery via cell-nanoparticle hybridization |
publisher |
VCU Scholars Compass |
publishDate |
2017 |
url |
http://scholarscompass.vcu.edu/etd/5002 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=6085&context=etd |
work_keys_str_mv |
AT cooperremyc noveltherapeuticdeliveryviacellnanoparticlehybridization |
_version_ |
1718515006383849472 |