Generation and Delivery of Charged Aerosols to Infant Airways

The administration of pharmaceutical aerosols to infants on mechanical ventilation needs to be improved by increasing the efficiency of delivery devices and creating better ways of evaluating potential therapies. Aerosolized medicines such as surfactants have been administered to ventilated infants...

Full description

Bibliographic Details
Main Author: Holbrook, Landon T
Format: Others
Published: VCU Scholars Compass 2015
Subjects:
Online Access:http://scholarscompass.vcu.edu/etd/3979
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4964&context=etd
id ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-4964
record_format oai_dc
spelling ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-49642017-03-17T08:28:39Z Generation and Delivery of Charged Aerosols to Infant Airways Holbrook, Landon T The administration of pharmaceutical aerosols to infants on mechanical ventilation needs to be improved by increasing the efficiency of delivery devices and creating better ways of evaluating potential therapies. Aerosolized medicines such as surfactants have been administered to ventilated infants with mixed results, but studies have shown improvement in respiratory function with a much lower dose than with liquid instillation through an endotracheal tube (ETT). An aerosolized medicine must be transported through the ventilation tubing and deposit in the lungs to have the desired therapeutic response. This work has taken a systematic approach to (i) develop new devices for the efficient production of small sized charged pharmaceutical aerosols, (ii) adapt a lead device to an infant ventilation system, (iii) develop a novel breathing infant lung (BIL) in vitro model capable of capturing lung delivery efficiency in an infant without the need for human subjects testing, and (iv) evaluate the hypothesis that small sized charged pharmaceutical aerosols can improve drug delivery efficiency to the lungs of a ventilated infant. Three new devices were developed and screened for the efficient generation of small sized charged pharmaceutical aerosols, which were: wick electrospray, condensational vapor, and a modified vibrating mesh nebulizer in a streamlined low flow induction charger (LF-IC). Of these devices, only the LF-IC produced a small [mean(SD) = 1.6(0.1) micrometers] and charged (1/100 Rayleigh limit) aerosol at a pharmaceutically relevant production rate [mean(SD) = 183(9) micrograms per minute]. The LF-IC was selected as a lead device and adapted for use in an infant ventilation system, which produced an increase in in vitro lung filter deposition efficiency from 1.3% with the commercial system to 34% under cyclic ventilation conditions. The BIL model was first shown to produce a realistic pressure-volume response curve when exposed to mechanical ventilation. The optimized LF-IC was then implemented in the BIL model to demonstrate superior reduction in inspiratory resistance when surfactant was delivered as an aerosol compared to liquid instillation. For the delivery of an aerosolized medication, the lung deposition efficiency increased from a mean(SD) 0.4(0.1)% when using the conventional delivery system to 21.3(2.4)% using the LF-IC in the BIL model, a 59-fold increase. The charged aerosol produced by the LF-IC was shown to have more depositional loss in the LF-IC than an uncharged aerosol, but the charge decreased the exhaled fraction of aerosol by 17%, which needs additional study to achieve statistical significance. Completion of this work has produced a device that can achieve lung delivery efficiency that is 59-fold greater than aerosols from conventional vibrating mesh nebulizers in invasively ventilated infants using a combination of small particle size, synchronization with inspiration and appropriate charge. The BIL model produced in this work can be used to test clinically relevant methods of administering medications to infants and can be used to provide more accurate delivery estimates for development of new nebulizers and inhalers. The LF-IC developed in this work could be used for controlled and efficient delivery of aerosolized antibiotics, steroids, non-steroidal anti-inflammatories, surfactants, and vasodilators. 2015-01-01T08:00:00Z text application/pdf http://scholarscompass.vcu.edu/etd/3979 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4964&context=etd © The Author Theses and Dissertations VCU Scholars Compass Respiratory Drug Delivery Surfactant Administration Breathing Infant Lung Model Biomechanics and Biotransport Other Mechanical Engineering Other Pharmacy and Pharmaceutical Sciences
collection NDLTD
format Others
sources NDLTD
topic Respiratory Drug Delivery
Surfactant Administration
Breathing Infant Lung Model
Biomechanics and Biotransport
Other Mechanical Engineering
Other Pharmacy and Pharmaceutical Sciences
spellingShingle Respiratory Drug Delivery
Surfactant Administration
Breathing Infant Lung Model
Biomechanics and Biotransport
Other Mechanical Engineering
Other Pharmacy and Pharmaceutical Sciences
Holbrook, Landon T
Generation and Delivery of Charged Aerosols to Infant Airways
description The administration of pharmaceutical aerosols to infants on mechanical ventilation needs to be improved by increasing the efficiency of delivery devices and creating better ways of evaluating potential therapies. Aerosolized medicines such as surfactants have been administered to ventilated infants with mixed results, but studies have shown improvement in respiratory function with a much lower dose than with liquid instillation through an endotracheal tube (ETT). An aerosolized medicine must be transported through the ventilation tubing and deposit in the lungs to have the desired therapeutic response. This work has taken a systematic approach to (i) develop new devices for the efficient production of small sized charged pharmaceutical aerosols, (ii) adapt a lead device to an infant ventilation system, (iii) develop a novel breathing infant lung (BIL) in vitro model capable of capturing lung delivery efficiency in an infant without the need for human subjects testing, and (iv) evaluate the hypothesis that small sized charged pharmaceutical aerosols can improve drug delivery efficiency to the lungs of a ventilated infant. Three new devices were developed and screened for the efficient generation of small sized charged pharmaceutical aerosols, which were: wick electrospray, condensational vapor, and a modified vibrating mesh nebulizer in a streamlined low flow induction charger (LF-IC). Of these devices, only the LF-IC produced a small [mean(SD) = 1.6(0.1) micrometers] and charged (1/100 Rayleigh limit) aerosol at a pharmaceutically relevant production rate [mean(SD) = 183(9) micrograms per minute]. The LF-IC was selected as a lead device and adapted for use in an infant ventilation system, which produced an increase in in vitro lung filter deposition efficiency from 1.3% with the commercial system to 34% under cyclic ventilation conditions. The BIL model was first shown to produce a realistic pressure-volume response curve when exposed to mechanical ventilation. The optimized LF-IC was then implemented in the BIL model to demonstrate superior reduction in inspiratory resistance when surfactant was delivered as an aerosol compared to liquid instillation. For the delivery of an aerosolized medication, the lung deposition efficiency increased from a mean(SD) 0.4(0.1)% when using the conventional delivery system to 21.3(2.4)% using the LF-IC in the BIL model, a 59-fold increase. The charged aerosol produced by the LF-IC was shown to have more depositional loss in the LF-IC than an uncharged aerosol, but the charge decreased the exhaled fraction of aerosol by 17%, which needs additional study to achieve statistical significance. Completion of this work has produced a device that can achieve lung delivery efficiency that is 59-fold greater than aerosols from conventional vibrating mesh nebulizers in invasively ventilated infants using a combination of small particle size, synchronization with inspiration and appropriate charge. The BIL model produced in this work can be used to test clinically relevant methods of administering medications to infants and can be used to provide more accurate delivery estimates for development of new nebulizers and inhalers. The LF-IC developed in this work could be used for controlled and efficient delivery of aerosolized antibiotics, steroids, non-steroidal anti-inflammatories, surfactants, and vasodilators.
author Holbrook, Landon T
author_facet Holbrook, Landon T
author_sort Holbrook, Landon T
title Generation and Delivery of Charged Aerosols to Infant Airways
title_short Generation and Delivery of Charged Aerosols to Infant Airways
title_full Generation and Delivery of Charged Aerosols to Infant Airways
title_fullStr Generation and Delivery of Charged Aerosols to Infant Airways
title_full_unstemmed Generation and Delivery of Charged Aerosols to Infant Airways
title_sort generation and delivery of charged aerosols to infant airways
publisher VCU Scholars Compass
publishDate 2015
url http://scholarscompass.vcu.edu/etd/3979
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4964&context=etd
work_keys_str_mv AT holbrooklandont generationanddeliveryofchargedaerosolstoinfantairways
_version_ 1718428591411167232